Get-Together mit den Erstsemestern des Master Wirtschaftsinformatik und MMDS

Research Group Data and Web Science
Data and Web Science Research Group

- 7 Professors
- 4 Post-docs
- 24 PhD students
Data and Web Science Research Group – Research Areas

- **Artificial Intelligence** (Prof. Heiner Stuckenschmidt)
 - knowledge representation formalisms and reasoning techniques for information extraction and integration

- **Data Analysis** (Prof. Rainer Gemulla)
 - methods for analyzing and mining large datasets as well as their practical realizations and applications

- **Natural Language Processing** (Prof. Simone Ponzetto)
 - knowledge acquisition, knowledge-rich language understanding, Computational Social Science and Digital Humanities

- **Statistical Nat. Lang. Processing** (Prof. Goran Glavaš)
 - modeling meaning of language, understanding text, and structuring knowledge from text
Data and Web Science Research Group – Research Areas

- **Image Processing** (Prof. Dr.-Ing. Margret Keuper)
 - Image Segmentation, Motion Segmentation, Efficient Video Segmentation, Semantic Segmentation, Multiple Object Tracking

- **Web-based Systems** (Prof. Chris Bizer)
 - large-scale data integration, evolution of the World Wide Web from a medium for the publication of documents into a global dataspace

- **Data Science** (Prof. Dr. Heiko Paulheim)
 - using web data as background knowledge in data mining, and data mining methods to create and improve large-scale knowledge bases
DWS Overall Research Goals:

1. methods for understanding large and heterogeneous data
2. application of these methods in different contexts
The DWS Group offers the following courses for master students:

- Relational Learning
- Data Mining and Matrices
- Semantic Web Technologies
- Computer Vision
- Web Data Integration
- Web Mining
- Image Processing
- Data Mining II
- Text Analytics
- Information Retrieval
- Decision Support
- Data Mining I
- Large-Scale Data Management
- Database Technology (MMDS)

- Offered this FSS semester.
- Offered in HWS.
IE 500: Data Mining 1

- Lecture contents – the basics of “torturing data”:
 1. Clustering: *How to automatically organize your MP3 collection?*
 2. Classification: *Will your bank grant you a loan?*
 3. Regression: How to determine the price of a house?
 4. Association Analysis: *Which products to place together in a supermarket to maximize customer purchases?*
 5. Text Mining: *Do students on Twitter like or dislike this lecture?*

- Exercises
 - Experiment with Rapidminer or Phython

- Student project:
 - Mine some data of your choice

- Teaching staff:
 - Prof. Dr. Christian Bizer (Lectures)
 - Oliver Lehmborg, Kiril Gashtevski, Daniel Ruffinelli (Exercises)
Advanced Data Mining methods
- Dimensionality Reduction
- Anomaly Detection
- Time Series Analysis
- Parameter Tuning
- Ensemble Learning
- Online Learning

Organization:
- Lectures and Exercises
- Participation in Data Mining Cup
- Opportunity to become a certified RapidMiner Data Analyst

Teaching staff:
- Prof. Dr. Heiko Paulheim (Lectures), Oliver Lehmberg (Exercises)
IE 671: Web Mining

- Approaches to mine knowledge from the Web
 - Web Usage Mining
 - Web Structure Mining
 - Web Content Mining

- Course Structure:
 - Lectures and exercises
 - Projects (during the second half)

- Teaching staff:
 - Prof. Dr. Simone Ponzetto
 - Prof. Dr. Goran Glavas
 - Dmitry Ustalov
IE 673: Data Mining and Matrices

- Matrices and tensors are powerful representations of data
 - Data points, sets, graphs, relational data, knowledge bases, ...

- Course goal: Learn how to analyze such data
 - Course covers theory and applications of dimensionality reduction, embeddings, denoising, discovery of latent structure, visualization, prediction, clustering, pattern mining, topic modelling, ...
 - Focus is on unsupervised and semi-supervised learning & matrix decompositions

Matrix representations:

<table>
<thead>
<tr>
<th>Anna</th>
<th>Bread</th>
<th>Butter</th>
<th>Beer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Charlie</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Customer transactions

<table>
<thead>
<tr>
<th>Book 1</th>
<th>Data</th>
<th>Matrix</th>
<th>Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book 2</td>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Book 3</td>
<td>4</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Document-term matrix

<table>
<thead>
<tr>
<th>Avatar</th>
<th>The Matrix</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Bob</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Charlie</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Incomplete rating matrix

<table>
<thead>
<tr>
<th>Saarbrücken</th>
<th>Jan</th>
<th>Jun</th>
<th>Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helsinki</td>
<td>6.5</td>
<td>10.9</td>
<td>8.7</td>
</tr>
<tr>
<td>Cape Town</td>
<td>15.7</td>
<td>7.8</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Cities and monthly temperatures
IE 673: Data Mining and Matrices

- Instructor: Rainer Gemulla
- Tutor: Yanjie Wang
- 2 SWS lecture, 2 SWS tutorium, 6 ECTS
- IE 500 Data Mining I recommended
- Gain hands-on experience
 - Smaller exercises to deepen lecture material
 - Homework assignments to analyze real data
 - Learn R
- Passing requirements
 - Regular assignments
 - Final exam or oral examination
Understanding end-to-end search systems
IE 663: Web Search and Information Retrieval

- **Lecture contents**: understanding search systems
 - Boolean and vector space retrieval models
 - Probabilistic and lang. modeling retrieval
 - Semantic and Latent Retrieval
 - Web search: Link-based algorithms

- **Teaching staff**:
 - Goran Glavaš (Lectures)
 - Robert Litschko (Exercises)

- **Team Project**:
 - Build your own search engine!
CS 646: Higher Level Computer Vision

- Lecture contents
 - Object Detection
 - Semantic Image Segmentation
 - Optical Flow
 - Video and Motion Segmentation
 - Deep Learning for Computer Vision

- Organization
 - Lectures and Exercises
 - Gain practical python and Matlab coding experience in the exercises

- Teaching Staff
 - Margret Keuper (Lectures and Exercises)
CS 460: Database Technology

- MMDS fundamental course
- Relational databases are the most prominent data storage paradigm
- Understand the concepts of RDBMS
 - Relational modeling and normal forms
 - Query processing and optimization
 - Transactions, concurrency, and recovery
- Teaching staff:
 - Prof. Dr. Heiko Paulheim (Lectures)
 - Sven Hertling (Exercises)
CS 704: Artificial Intelligence Seminar

Topic: Analyzing Financial Networks

Lecturer:

Dr. Ioana Karnstedt-Hulpus
ioana@information.uni-mannheim.de

Prof. Dr. Heiner Stuckenschmidt

Network Types

• Interbank Networks
• Investment Networks
• Personal Networks

Methods

• Macro-Structures
• Neighbourhoods
• Centrality
• …
In this seminar, you will
- Learn about advancement research topics in NLP
- Read, understand, explore, and present scientific literature

This term: **Statistical Machine Translation**

Check out website and register **asap (Feb 13)**

Instructors: Sanja Stajner, Simone Ponzetto
In this seminar, you will

- explore and experiment with a popular machine learning platform of your choice,
- solve a small, self-defined machine learning problem with this platform,
- give an overview over the platform, your problem, and your solution

- Prerequisites: Data Mining I, suitable programming experience
- Check out website and register until Feb 11
CS 715: Large-Scale Data Integration Seminar

• Covers topics such as
 • Data Search
 • Holistic Schema Matching
 • Collective Instance Matching
 • Truth Discovery
 • Set Completion

• Instructors:
 • Christian Bizer, Anna Primpeli,
 • Oliver Lehmberg, Yaser Oulabi

• Prerequisites:
 • Web Data Integration recommended

• Register until Feb 16th
Announcement: New Lecture in Fall 2018

New Lecture on Relational Learning

Lecturer: Prof. Dr. Heiner Stuckenschmidt
Tutorials: Dr. Christian Meilicke & Manuel Fink

Learn how to combine the
representational power of logics with the
data mining capabilities of machine learning

Learn how to learn expressive rules as the one below
given the input on the right:

A molecule is active IF it contains a ring R of size 5 and atoms Y and Z that are connected by a double bond, such that Y also belongs to R.
The DWS group continuously hires good students.

- To work on:
 - Data and Web Mining projects
 - Information Extraction and Integration projects
 - Knowledge Representation and Reasoning projects
 - Implement open source tools

- 30-60 h/month contracts are possible.

- Contact PostDoc or Professor responsible for the project/area that you are interested in.
 - Include CV and overview about your marks.

- Good start for writing your master thesis within group.