Further Teaching

• First time in FSS 2014: Data Mining II
 – Taught by Heiko & Robert

• Topics
 – Advanced Data Preprocessing
 – Regression
 – Anomaly Detection
 – Time Series Analysis
 – Ensemble Learning
 – Online Learning
 – Parameter Tuning

• Project
 – Participation in the Data Mining Cup 2014
Further Teaching

• One comment in the feedback:
 – ideas for improvement: “include web mining topics”, “more sentiment analysis”

• Lecture in FSS 2014: Web Mining
 – taught by Christian Bizer, Cäcilia Zirn, and Robert Meusel

• Topics:
 – Web Usage Mining
 – Recommender Systems
 – Web Structure Mining
 – Social Network Analysis
 – Web Content Mining
 – Information Extraction
 – Sentiment Analysis
Further Teaching

- Web Search and Information Retrieval
 - Focus on text mining problems

- Topics
 - Efficient text indexing
 - Boolean and vector space retrieval models
 - Evaluation of retrieval systems
 - Probabilistic Information Retrieval
 - Text classification and clustering
 - Web search, crawling and link-based algorithms.
Master Thesis Topics

• Our group offers various topics in various areas
 – Data Mining
 – Web Mining
 – Semantic Web
 – Information Extraction
 – ...

• Just scan our website
 – thesis topics are often not up to date
 – but research interests are
- References:
 - Daniel Rinser, Dustin Lange, Felix Naumann: Cross-lingual entity matching and infobox alignment in Wikipedia.

- Contact: Christian Bizer
Fast-forward Feature Generation

• RapidMiner LOD Extension
 – an extension to RapidMiner
 – acquires background knowledge from Linked Open Data

• Current approach
 – get data first
 – evaluate and filter later
 – most data is useless, but it's hard to tell before having it

• Scalable approach (your work!)
 – combine data acquisition and evaluation/filtering
Divide et Impera

• Given a table about cities
 – population, area, cinemas, restaurants, …

• Task
 – predict, e.g., quality of living

• Some “artificial” columns would help
 – in particular: quotients, e.g., cinemas/population
 – trying all quotients is too complex – $O(cols^2 \times rows)$

• Envisioned solution (your work)
 – try to predict which quotients will be insightful before computing them
John, Paul, George, and Ringo

• Who are these four? An easy task for most humans
 → John Lennon, Paul McCartney, George Harrison, and Ringo Starr

• However, an equally valid solution would be
 → John Cage, Paul Auster, George W. Bush, and Ringo Mendoza

• Goal (your work!)
 – find a set of things that are as equal as possible
 – practical relevance: automatic table fusion
DBpedia Usage Mining

• DBpedia contains millions of facts
 – but not all of them are equally interesting
 – some are more closely related than others

• Can we tell the interesting stuff from the non-interesting one?

• Approach (your work!)
 – look at DBpedia usage logs
 – find typical usage patterns
 – exploit usage patterns for information ranking and clustering
What's in a Wikipedia Category Name?

• Wikipedia categories are interesting to humans
 – e.g., *Australian Bands founded in 1990*

• ...but not interpretable by machines

• Approach (your work!)
 – translate categories into formal axioms
 – e.g., $\text{Band}(x)$, $\text{from}(x, \text{Australia})$, $\text{foundingYear}(x, 1990)$
 – contribute formal axioms to DBpedia
Hyperlink Graph – Structure of the WWW

3.5 billion URLs

128 billion links

>350GB of raw data