Data Mining I

Association Analysis
1. What is Association Analysis?
2. Frequent Itemset Generation
3. Rule Generation
4. Interestingness Measures
5. Handling Continuous and Categorical Attributes
1. Association Analysis

Goal: Find co-occurrence relationships, called associations, amongst data items.

- proposed by Agrawal et al. in 1993.
- initially used for **Shopping Basket Analysis** to find how items purchased by customers are related.
- later extended to more complex data structures
 - **sequential patterns**
 - **subgraph patterns**
- and other application domains
 - **web usage mining**
 - **social science**
 - **life science**
Association Analysis

Given a set of transactions, **find rules** that will predict the occurrence of an item based on the occurrences of other items in the transaction.

Shopping transactions

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Examples of Association Rules

\[
\{\text{Diaper}\} \rightarrow \{\text{Beer}\} \\
\{\text{Milk, Bread}\} \rightarrow \{\text{Eggs, Coke}\} \\
\{\text{Beer, Bread}\} \rightarrow \{\text{Milk}\}
\]

Implication means co-occurrence, not causality!
Definition: Frequent Itemset

- Itemset
 - A collection of one or more items
 - Example: \{Milk, Bread, Diaper\}
 - \(k\)-itemset: An itemset that contains \(k\) items

- Support count (\(\sigma\))
 - Frequency of occurrence of an itemset
 - E.g. \(\sigma(\{\text{Milk, Bread, Diaper}\}) = 2\)

- Support (\(s\))
 - Fraction of transactions that contain an itemset
 - E.g. \(s(\{\text{Milk, Bread, Diaper}\}) = 2/5\)

- Frequent Itemset
 - An itemset whose support is greater than or equal to a \textit{minsup} threshold.

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>
Definition: Association Rule

- **Association Rule**
 - An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets.
 - An association rule states that when X occurs, Y occurs with certain probability.
 - Example:
 $\{\text{Milk, Diaper}\} \rightarrow \{\text{Beer}\}$

- **Rule Evaluation Metrics**
 - **Support** (s)
 Fraction of transactions that contain both X and Y
 - **Confidence** (c)
 Measures how often items in Y appear in transactions that contain X

Examples:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

\[
s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4
\]

\[
c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67
\]
Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 1. support $\geq \text{minsup}$ threshold
 2. confidence $\geq \text{minconf}$ threshold

- minsup and minconf are provided by the user.

- Brute Force Approach:
 1. List all possible association rules
 2. Compute the support and confidence for each rule
 3. Remove rules that fail the minsup and minconf thresholds

\Rightarrow Computationally prohibitive due to large number of candidates!
Mining Association Rules

Example of Rules:

{Milk, Diaper} → {Beer} (s=0.4, c=0.67)
{Milk, Beer} → {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} → {Milk} (s=0.4, c=0.67)
{Beer} → {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} → {Milk, Beer} (s=0.4, c=0.5)
{Milk} → {Diaper, Beer} (s=0.4, c=0.5)

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence.
- Thus, we may decouple the support and confidence requirements.
Mining Association Rules

- Two-step approach:

1. Frequent Itemset Generation
 - Generate all itemsets whose support \geq minsup

2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

- Frequent itemset generation is still computationally expensive.
2. Frequent Itemset Generation

Given d items, there are 2^d candidate itemsets!
Brute Force Approach

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database
- Match each transaction against every candidate

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

- Complexity $\sim O(NMw)$ ➔ Expensive since $M = 2^d$!!!
- A smarter algorithm is required.
Example: Brute Force Approach

- Example:
 - Amazon has 10 million books (i.e., Amazon Germany, as of 2011)

- That is $2^{10000000}$ possible itemsets

- As a number:
 - $9.04981... \times 10^{3010299}$
 - That is: a number with 3 million digits!

- However:
 - most itemsets will not be important at all
 - e.g., books on Chinese calligraphy and data mining bought together
 - thus, smarter algorithms should be possible
Reducing the Number of Candidates

- **Apriori Principle**

 If an itemset is frequent, then all of its subsets must also be frequent.

- Apriori principle holds due to the following property of the support measure:

 \[\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y) \]

 - Support of an itemset never exceeds the support of its subsets
 - This is known as the **anti-monotone** property of support
Illustrating the Apriori Principle

Found to be Infrequent

Pruned supersets
Illustrating the Apriori Principle

<table>
<thead>
<tr>
<th>Item</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td>4</td>
</tr>
<tr>
<td>Coke</td>
<td>2</td>
</tr>
<tr>
<td>Milk</td>
<td>4</td>
</tr>
<tr>
<td>Beer</td>
<td>3</td>
</tr>
<tr>
<td>Diaper</td>
<td>4</td>
</tr>
<tr>
<td>Eggs</td>
<td>1</td>
</tr>
</tbody>
</table>

No need to generate candidates involving Coke or Eggs.

Items (1-itemsets)

Pairs (2-itemsets)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread, Milk}</td>
<td>3</td>
</tr>
<tr>
<td>{Bread, Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Bread, Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Milk, Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Milk, Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Beer, Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

No need to generate candidate {Milk, Diaper, Beer} as count {Milk, Beer} = 2.

Triplets (3-itemsets)

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread, Milk, Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>
1. Let $k=1$

2. Generate frequent itemsets of length 1

3. Repeat until no new frequent itemsets are identified

 1. **Generate** length $(k+1)$ candidate itemsets from length k frequent itemsets

 2. **Prune** candidate itemsets that can not be frequent because they contain subsets of length k that are infrequent (Apriori Principle)

 3. **Count** the support of each candidate by scanning the DB

 4. **Eliminate** candidates that are infrequent, leaving only those that are frequent
Example: Finding frequent itemsets

<table>
<thead>
<tr>
<th>itemset</th>
<th>count</th>
<th>minsup=0.5</th>
</tr>
</thead>
</table>

1. scan T

- **Cand₁**: \{1\}:2, \{2\}:3, \{3\}:3, \{4\}:1, \{5\}:3
- **Fequ₁**: \{1\}:2, \{2\}:3, \{3\}:3, \{5\}:3
- **Cand₂**: \{1,2\}, \{1,3\}, \{1,5\}, \{2,3\}, \{2,5\}, \{3,5\}

2. scan T

- **Cand₂**: \{1,2\}:1, \{1,3\}:2, \{1,5\}:1, \{2,3\}:2, \{2,5\}:3, \{3,5\}:2
- **Fequ₂**: \{1,3\}:2, \{2,3\}:2, \{2,5\}:3, \{3,5\}:2
- **Cand₃**: \{2,3,5\}

3. scan T

- **C₃**: \{2,3,5\}:2
- **F₃**: \{2,3,5\}

Dataset T

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T100</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>T200</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>T300</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>T400</td>
<td>2, 5</td>
</tr>
</tbody>
</table>
3. Rule Generation

- Given a frequent itemset \(L \), find all non-empty subsets \(f \subseteq L \) such that \(f \rightarrow L - f \) satisfies the minimum confidence requirement.

Example Frequent Itemset:
\[\{\text{Milk}, \text{Diaper}, \text{Beer}\} \]

Example Rule:
\[\{\text{Milk}, \text{Diaper}\} \rightarrow \text{Beer} \]

\[
\sigma = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{\sigma(\text{Milk}, \text{Diaper})} = \frac{2}{3} = 0.67
\]
Challenge: Large Number of Candidate Rules

- If \(\{A,B,C,D\} \) is a frequent itemset, then the candidate rules are:

 \[

 \begin{align*}
 ABC & \rightarrow D, & ABD & \rightarrow C, & ACD & \rightarrow B, & BCD & \rightarrow A, \\
 A & \rightarrow BCD, & B & \rightarrow ACD, & C & \rightarrow ABD, & D & \rightarrow ABC, \\
 AB & \rightarrow CD, & AC & \rightarrow BD, & AD & \rightarrow BC, & BC & \rightarrow AD, \\
 BD & \rightarrow AC, & CD & \rightarrow AB, & & & &
 \end{align*}
 \]

- If \(|L| = k \), then there are \(2^k - 2 \) candidate association rules
 (ignoring \(L \rightarrow \emptyset \) and \(\emptyset \rightarrow L \))
Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property
 \[c(ABC \rightarrow D) \text{ can be larger or smaller than } c(AB \rightarrow D) \]
 - But confidence of rules generated from the same itemset has an
 anti-monotone property
 - e.g., \(L = \{A, B, C, D\} \):
 \[c(ABC \rightarrow D) \geq c(AB \rightarrow CD) \geq c(A \rightarrow BCD) \]
 - Confidence is anti-monotone with respect to the number of
 items on the right hand side of the rule
Rule Generation

• Confidence is anti-monotone w.r.t. number of items on the RHS of the rule
 – i.e., “moving elements from left to right” cannot increase confidence
 – reason:
 \[c(AB \rightarrow C) := \frac{s(ABC)}{s(AB)} \quad c(A \rightarrow BC) := \frac{s(ABC)}{s(A)} \]

 – Due to anti-monotone property of support, we know
 • \(S(AB) \leq S(A) \)
 – Hence
 • \(c(AB \rightarrow C) \geq C(A \rightarrow BC) \)
Rule Generation for Apriori Algorithm

- BCD => A
- ACD => B
- ABD => C
- ABC => D
- CD => AB
- BD => AC
- BC => AD
- AD => BC
- AC => BD
- AB => CD
- D => ABC
- C => ABD
- B => ACD
- A => BCD

Low Confidence Rule

Pruned Rules
Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent.

- $\text{join}(CD \Rightarrow AB, BD \Rightarrow AC)$ would produce the candidate rule $D \Rightarrow ABC$

- Prune rule $D \Rightarrow ABC$ if its subset $AD \Rightarrow BC$ does not have high confidence

- All the required information for confidence computation has already been recorded in itemset generation. Thus, there is no need to see the data T any more.
FP-Growth

Alternative frequent itemset generation algorithm which compresses data as a tree structure in memory.

Details: Tan/Steinback/Kumar

Chapter 6.6
Creating Association Rules in Rapidminer

- **FP-Growth**
- **Create Association Rules**

Options available:
- **criterion**: confidence
- **min confidence**: 0.1

Note: 2 hidden expert parameters
Exploring Association Rules in Rapidminer

<table>
<thead>
<tr>
<th>No.</th>
<th>Premises</th>
<th>Conclusion</th>
<th>Support</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>278</td>
<td>marital-status = Never-married</td>
<td>class = <=50K</td>
<td>0.310</td>
<td>0.957</td>
</tr>
<tr>
<td>266</td>
<td>age = range1 [-∞ - 31.500]</td>
<td>class = <=50K</td>
<td>0.330</td>
<td>0.938</td>
</tr>
<tr>
<td>236</td>
<td>sex = Female</td>
<td>class = <=50K</td>
<td>0.308</td>
<td>0.917</td>
</tr>
<tr>
<td>157</td>
<td>workclass = Private</td>
<td>class = <=50K</td>
<td>0.510</td>
<td>0.775</td>
</tr>
<tr>
<td>154</td>
<td>native-country = United-States, world</td>
<td>class = <=50K</td>
<td>0.440</td>
<td>0.751</td>
</tr>
<tr>
<td>153</td>
<td>race = White, workclass = Private</td>
<td>class = <=50K</td>
<td>0.418</td>
<td>0.749</td>
</tr>
<tr>
<td>150</td>
<td>native-country = United-States</td>
<td>class = <=50K</td>
<td>0.646</td>
<td>0.736</td>
</tr>
<tr>
<td>149</td>
<td>native-country = United-States, race</td>
<td>class = <=50K</td>
<td>0.376</td>
<td>0.732</td>
</tr>
<tr>
<td>148</td>
<td>race = White</td>
<td>class = <=50K</td>
<td>0.614</td>
<td>0.721</td>
</tr>
<tr>
<td>147</td>
<td>native-country = United-States, race</td>
<td>class = <=50K</td>
<td>0.556</td>
<td>0.715</td>
</tr>
<tr>
<td>146</td>
<td>sex = Male, workclass = Private</td>
<td>class = <=50K</td>
<td>0.302</td>
<td>0.699</td>
</tr>
</tbody>
</table>
4. Interestingness Measures

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if \(\{A,B,C\} \rightarrow \{D\} \) and \(\{A,B\} \rightarrow \{D\} \) have same support & confidence

- Interestingness measures can be used to prune or rank the derived patterns.

- In the original formulation of association rules, support & confidence are the only interest measures used.

- Later, various other measures have been proposed
 - See Tan/Steinback/Kumar, Chapter 6.7
 - We will have a look at one: Lift
Drawback of Confidence

Association Rule: Tea → Coffee

<table>
<thead>
<tr>
<th></th>
<th>Coffee</th>
<th>Coffee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tea</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Tea</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

Confidence = $P(\text{Coffee}|\text{Tea}) = 0.75$

but $P(\text{Coffee}) = 0.9$

Although confidence is high, rule is misleading as the fraction of coffee drinkers is higher than the confidence of the rule.
Lift

- The *lift* of an association rule $X \rightarrow Y$ is defined as:

$$Lift = \frac{P(Y | X)}{P(Y)}$$

- Ratio of confidence to expected confidence

- Interpretation:
 - if $lift > 1$, then X and Y are positively correlated
 - if $lift < 1$, then X and Y are negatively correlated
 - if $lift = 1$, then X and Y are independent.
Example: Lift

Association Rule: Tea → Coffee

Confidence = P(Coffee | Tea) = 0.75

but P(Coffee) = 0.9

⇒ Lift = 0.75/0.9 = 0.8333 (< 1, therefore is negatively correlated)
5. Handling Continuous and Categorical Attributes

How to apply association analysis formulation to non-asymmetric binary variables?

<table>
<thead>
<tr>
<th>Session Id</th>
<th>Country</th>
<th>Session Length (sec)</th>
<th>Number of Web Pages viewed</th>
<th>Gender</th>
<th>Browser Type</th>
<th>Buy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USA</td>
<td>982</td>
<td>8</td>
<td>Male</td>
<td>IE</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>China</td>
<td>811</td>
<td>10</td>
<td>Female</td>
<td>Netscape</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>USA</td>
<td>2125</td>
<td>45</td>
<td>Female</td>
<td>Mozilla</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Germany</td>
<td>596</td>
<td>4</td>
<td>Male</td>
<td>IE</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Australia</td>
<td>123</td>
<td>9</td>
<td>Male</td>
<td>Mozilla</td>
<td>No</td>
</tr>
</tbody>
</table>

Example of an Association Rule:

\{\text{Number of Pages} \in [5,10) \land (\text{Browser}=\text{Mozilla})\} \rightarrow \{\text{Buy} = \text{No}\}
Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables
- Introduce a new “item” for each distinct attribute-value pair
 - Example: replace Browser Type attribute with
 - attribute: Browser Type = Internet Explorer
 - attribute: Browser Type = Mozilla
 -

- Potential Issues
 - What if attribute has many possible values
 - Many of the attribute values may have very low support
 - Potential solution: Aggregate the low-support attribute values
 - What if distribution of attribute values is highly skewed
 - Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) item
 - Potential solution: drop the highly frequent items
Handling Continuous Attributes

- Transform continuous attribute into binary variables using discretization
 - Equal-width binning
 - Equal-frequency binning

- Issue: Size of the discretized intervals affect support & confidence

 \[
 \{\text{Refund} = \text{No, (Income} = \$51,250)\} \rightarrow \{\text{Cheat} = \text{No}\}
 \]
 \[
 \{\text{Refund} = \text{No, (Income} \leq 60K \text{ and Income} \leq 80K)\} \rightarrow \{\text{Cheat} = \text{No}\}
 \]
 \[
 \{\text{Refund} = \text{No, (Income} \leq 80K \text{ and Income} \leq 1B)\} \rightarrow \{\text{Cheat} = \text{No}\}
 \]

 - If intervals too small
 - may not have enough support
 - If intervals too large
 - may not have enough confidence
Conclusion

- The algorithm does the counting for you and finds patterns in the data.

- You need to do the interpretation based on your knowledge about the application domain.
 - Which patterns are meaningful?
 - Which patterns are surprising?
To find out if two items x and y are bought together, we can also compute their correlation.

Shortcoming: Covers only correlation between two items, not between multiple items, e.g. \{Beer, Bread\} \rightarrow \{Milk\}

E.g., using Pearson's correlation coefficient:

$$
\frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sqrt{\sum (y_i - \bar{y})^2}}}
$$

Numerical coding:
1: item was bought
0: item was not bought

- \bar{x}: average of x (i.e., how often x was bought)
Correlation Analysis in RapidMiner

![Correlation Matrix](image)

<table>
<thead>
<tr>
<th>Attributes</th>
<th>ThinkPad X2</th>
<th>Asus EeePC</th>
<th>HP Laserjet</th>
<th>2 GB DDR3</th>
<th>8 GB DDR3</th>
<th>Lenovo Tabl</th>
<th>Netbook-Sc</th>
<th>HP CE50 T</th>
<th>LT Laser M</th>
<th>LT Minimaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThinkPad X2</td>
<td>1</td>
<td>-1</td>
<td>0.356</td>
<td>-0.816</td>
<td>0.612</td>
<td>0.583</td>
<td>-0.667</td>
<td>0.356</td>
<td>0.167</td>
<td>-0.408</td>
</tr>
<tr>
<td>Asus EeePC</td>
<td>-1</td>
<td>1</td>
<td>-0.356</td>
<td>0.816</td>
<td>-0.612</td>
<td>-0.583</td>
<td>0.667</td>
<td>-0.356</td>
<td>-0.167</td>
<td>0.408</td>
</tr>
<tr>
<td>HP Laserjet</td>
<td>0.356</td>
<td>-0.356</td>
<td>1</td>
<td>-0.218</td>
<td>-0.327</td>
<td>0.356</td>
<td>-0.535</td>
<td>1</td>
<td>-0.089</td>
<td>-0.655</td>
</tr>
<tr>
<td>2 GB DDR3</td>
<td>-0.816</td>
<td>0.816</td>
<td>0.218</td>
<td>1</td>
<td>-0.500</td>
<td>-0.816</td>
<td>0.816</td>
<td>-0.218</td>
<td>0</td>
<td>0.200</td>
</tr>
<tr>
<td>8 GB DDR3</td>
<td>0.612</td>
<td>-0.612</td>
<td>-0.327</td>
<td>0.500</td>
<td>1</td>
<td>0.102</td>
<td>-0.408</td>
<td>-0.327</td>
<td>0.102</td>
<td>0</td>
</tr>
<tr>
<td>Lenovo Tabl</td>
<td>0.583</td>
<td>-0.583</td>
<td>0.356</td>
<td>0.816</td>
<td>0.102</td>
<td>1</td>
<td>-0.667</td>
<td>0.356</td>
<td>0.250</td>
<td>0</td>
</tr>
<tr>
<td>Netbook-Sc</td>
<td>-0.667</td>
<td>0.667</td>
<td>-0.535</td>
<td>0.816</td>
<td>-0.408</td>
<td>-0.667</td>
<td>1</td>
<td>-0.535</td>
<td>0.167</td>
<td>0.408</td>
</tr>
<tr>
<td>HP CE50 T</td>
<td>0.356</td>
<td>-0.356</td>
<td>1</td>
<td>-0.218</td>
<td>-0.327</td>
<td>0.356</td>
<td>-0.535</td>
<td>1</td>
<td>-0.089</td>
<td>-0.655</td>
</tr>
<tr>
<td>LT Laser M</td>
<td>0.167</td>
<td>-0.167</td>
<td>-0.089</td>
<td>0</td>
<td>0.102</td>
<td>-0.250</td>
<td>0.167</td>
<td>0.089</td>
<td>1</td>
<td>-0.408</td>
</tr>
<tr>
<td>LT Minimaus</td>
<td>-0.408</td>
<td>0.408</td>
<td>-0.655</td>
<td>0.200</td>
<td>0</td>
<td>0</td>
<td>0.408</td>
<td>-0.655</td>
<td>-0.408</td>
<td>1</td>
</tr>
</tbody>
</table>