Data Mining I

Classification Workflow with Rapidminer
Outline

1. Data Import
2. Preprocessing
3. Classification
4. Evaluation
Data Import

- import your data into Rapidminer Repository
 - Everything in one place
 - Valuable meta-data for further processing

- Use the import wizard, if available
Preprocessing

- Look at your data
 - What is the target attribute?
 - Is the target attribute already a label?
 - What is the distribution of labeled examples by class?
 - Is my classifier capable of handling imbalanced data?
 - What other attributes are available?
 - Is my classifier able to handle these types of attribute?
 - What are the ranges of the attributes?
 - Is my classifier good in handling various ranges?
 - What attributes correlate?
 - Is my classifier able to handle strongly correlating attributes?

- See Exercise 1 for more information.
Set Roles & Normalization

• Set roles for attributes

• Normalize attribute values
Discretize

- Numerical attributes can be divided into bins using discretization
- By Size (equally sized data ranges per bin)

- By Frequency (equally sized number of examples per bin)
Balancing

- Sampling (with balancing)
- Multiplication of data
 - Filter under-represented class examples
 - Append them to original example set
Classification

- Input: data set with labels
- Output: classification modell

Known Classifiers:
- K-NN
- Naive Bayes
- Decision Tree (Hunts & ID3)
- Rule Induction & Tree to Rules
- Support Vector Machine (libSVM)
- Neural Networks
Evaluation

- Evaluate on dedicated test data set

- Evaluate on one data set using
 - Split validation
 - X-Validation
Split-/Cross-Validation

- Split-validation is a *holdout method*, which reserves a certain amount for testing and uses the remainder for training.
 - First step: split data at a ratio in test and training set
 - Second step: learn a model on the training set and evaluate the model on the test set

- *Cross-validation* avoids overlapping test sets
 - First step: data is split into k subsets of equal size
 - Second step: each subset in turn is used for testing and the remainder for training

Important: Never ever use the same example set for training & testing!
Accuracy and Error Rate

- Most widely-used metrics:

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]

Error Rate = 1 – **Accuracy**
Limitation of Accuracy: Unbalanced Data

- Sometimes, classes have very unequal frequency
 - Fraud detection: 98% transactions OK, 2% fraud
 - eCommerce: 99% don’t buy, 1% buy
 - Intruder detection: 99.99% of the users are no intruders
 - Security: >99.99% of Americans are not terrorists

- The class of interest is commonly called the positive class, and the rest negative classes.

- Consider a 2-class problem
 - Number of Class 0 examples = 9990, Number of Class 1 examples = 10
 - If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example
Precision and Recall

Alternative: Use measures from information retrieval which are biased towards the positive class.

<table>
<thead>
<tr>
<th>Actual Positive</th>
<th>Classified Positive</th>
<th>Classified Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>FN</td>
<td>TN</td>
</tr>
<tr>
<td>FP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
p = \frac{TP}{TP + FP}.
\]

\[
r = \frac{TP}{TP + FN}.
\]

Precision \(p \) is the number of correctly classified positive examples divided by the total number of examples that are classified as positive.

Recall \(r \) is the number of correctly classified positive examples divided by the total number of actual positive examples in the test set.
Performance

- Standard Measures
 - Accuracy
 - Precision
 - Recall

- Task Specific
 - Misclassification Costs
Questions?