Data Mining I

Introduction to the Student Projects
Outline

1. Requirements for Student Projects
2. Requirements for Project Reports
3. Final Exam
Student Projects

- **Goals**
 - Gain practical experience with the complete data mining process
 - Get to know additional problem-specific
 - preprocessing methods
 - data mining methods

- **Expectation**
 - Select an interesting data mining problem of your choice
 - Solve the problem using
 - the data mining methods that we have learned so far, including
 - proper parameter optimization
 - problem-specific pre-processing and smart feature creation
 - additional data mining methods which might be helpful for solving the problem and build on what we learned in class
Procedure

- Teams of six students
 1. realize a data mining project
 2. write a 12 page summary of the project and the methods employed in the project
 3. present the project results to the other students (10 minutes presentation + 5 minutes discussion)

- Final mark for the course
 - 30 % written summary about the project
 - 10 % project presentation
 - 60 % written exam
<table>
<thead>
<tr>
<th>Week</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.04.2018</td>
<td>Introduction to Student Projects</td>
<td>Preparation of Project Outline</td>
</tr>
<tr>
<td>Monday, April 23rd 2018, 23:59: Submission of Project Outlines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.04.2018</td>
<td>Lecture Association Analysis</td>
<td>Exercise Association Analysis + Feedback Student Projects (15:30-17:00)</td>
</tr>
<tr>
<td>02.05.2018</td>
<td>Project Work</td>
<td>Feedback on demand</td>
</tr>
<tr>
<td>09.05.2018</td>
<td>Project Work</td>
<td>Feedback on demand</td>
</tr>
<tr>
<td>16.05.2018</td>
<td>Project Work</td>
<td>Feedback on demand</td>
</tr>
<tr>
<td>Monday, May 21th 2018, 23:59: Submission of Project Reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.05.2018</td>
<td>Presentation of Project Results</td>
<td>Presentation of Project Results</td>
</tr>
<tr>
<td>07.06.2018</td>
<td></td>
<td>Exam</td>
</tr>
</tbody>
</table>
Where to find interesting Data Sets?

- KDnuggets Dataset List
 - References to various data catalogs and datasets
- Data.gov, data.gov.uk, govdata.de
 - Public sector data provided by the government bodies
- Programmable Web
 - Website giving an overview about 13000 public Web APIs
- Kaggle
 - Website running commercial and educational data science competitions
 - Offers datasets as well as solutions for older competitions
 - https://www.kaggle.com/
- KDD Cup and Data Mining Cup
 - Data mining competitions providing data sets and solutions
 - http://www.kdd.org/kdd-cup
 - https://www.data-mining-cup.com
Where to Find Information about Additional Methods?

1. Pang-Ning Tan, Michael Steinback, Vipin Kumar: Introduction to Data Mining, Pearson / Addison Wesley.

Where to Find Information about Additional Methods?

- Check out the solutions to your problem that other people have tried.
 - for instance by looking at submissions of the KDD Cup or Data Mining Cup as well as Kaggle discussion groups
 - or search for relevant scientific papers using Google
Some Project Ideas (not binding)

- **Web Log Mining**
 - Learn a classifier for the categorizing the visitors of your website.
 - Which features matter? Number of pages visited, time on site, ..
 (Bing Liu Chapter 12.x)
 - Preprocess some web log data outside RapidMiner
 - Learn and evaluate classifier within RapidMiner

- **Wikipedia Contributors / Hoax Articles**
 - Examine the edit history of Wikipedia contributors
 - Cluster users by different attributes (no of edits, edits/day, topic, ...)
 - Or learn a classifier for the categorizing Wikipedia contributors

- **Sentiment Analysis for Discussion Forum / Rating Site / Tweets**
 - Are people positive or negative about topic / product? (Bing Liu 11.x)

- **SPAM Detection**
 - eMail, blog or discussion forum (Bing Liu 6.10, 11.9)
Project Idea from Professor Armknecht

- Privacy Treats resulting from Smart Home Devices
 - temperature and relative humidity is suspected to leak privacy-sensitive information, e.g., the number of occupants in the room or even the activity of these occupants.

- Prof. Armknecht’s team
 - collected room climate data in form of controlled experiments.
 - learned initial models in order to predict number of participants and their activities

- Your task: Try to improve their results by applying different methods and different preprocessing.
 - Maybe using the RapidMiner time series extension

- More information and data
 - https://github.com/IoTsec/Room-Climate-Datasets
Some Projects realized in previous Semesters

- **Mannheim Police Reports**
 - Learn classifiers for police reports
 - Identify type of incident, severity of incident, location of incident

- **Bundesliga Betting Rules**
 - Find rules that help you to predict the outcome of a Bundesliga game

- **last.fm Playlist Analysis**
 - Cluster last.fm users according to the style of the songs they are listening to
 - Find commons sets of songs for the different clusters

- **Analysis of Training Data of a Fitness Center**
 - Find different customer groups by clustering exercise data
 - Find frequent combinations of exercises

- **Sentiment Analysis of Tweets about Movies**
 - Learned classifier from IMDB movie reviews
 - Applied and tested with tweets afterwards

- **Classifying a Document’s Perspective**
 - using the example of Israeli – Palestinian Essays
Project Outlines

- maximum 4 pages including title page, using DWS master thesis layout
 - Include a project name and your team number on the first page!
- due Monday, April 23rd 2018, 23:59
- send by eMail to Chris, Oliver, Kiril & Daniel
- answer the following questions:
 1. What is the problem you are solving?
 2. What data will you use?
 - Where will you get it?
 - How will you gather it?
 3. How will you solve the problem?
 1. What preprocessing steps will be required?
 2. Which algorithms do you plan to use?
 - Be as specific as you can!
 4. How will you measure success? (Evaluation method)
 5. What do you expect your results to look like? (Model/Clusters/Patterns)
- Feedback about your project outlines: Thursday, 26.4., 15:30-17:00
Coaching Sessions

- We will give you tips and answer questions concerning your project.

- **Registration via email** to Oliver, Kiril & Daniel is mandatory!
 - until Tuesday night!
 - including the questions that you like to discuss
 - including which session you prefer (Thursday B2/B3)

- We will assign you a time slot afterwards and inform you about the slot via email.

- Every team has to attend at least one coaching session!
Project Report

- 12 pages (exactly!) including title/toc page and reference page → max. 10 pages, no appendix. Each extra page and each day of late submission downgrades your mark by 0.3!
- due Monday, May 21th 2018, 23:59
- send by email to Chris, Oliver, Kiril & Daniel
- Outline for project report:
 1. Application area and goals
 2. Structure and size of the data set (minimum 1 page)
 3. Preprocessing and Mining
 • describe different approaches and parameter settings that you tried
 • including evaluation setup and evaluation results
 • including discussion of the results
- Requirements
 1. You must use the DWS master thesis layout.
 2. Please cite sources properly. Preferred citation style [Author, year].
 3. Also submit your RapidMiner processes and (a subset) of your data.
 4. Include your names and your team number on the first page!
Deadly Errors to Avoid

1. Normalize numeric data before calculating any similarity metrics

2. If your data is unbalanced
 - balance your training data
 - do NOT balance your test data
 - report P/R/F1, not accuracy
Final Exam

- Date: **Thursday, June 7th**
- Duration: 60 minutes
- Structure: 6 open questions that
 - check whether you have understood the content of the lecture
 - require you to describe the ideas behind algorithms and methods
 - might require you to do some simple calculations
Team Assignment

- Find your team now!
- Then enter your team in the student/team matrix!
 - Only enter if you have a team (don’t make random crosses!)
 - There can only be **one cross per row** (you can’t be in two teams!)
 - There should be **six crosses per column** (**six students per team!**)

<table>
<thead>
<tr>
<th>Name / Team</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utzer, Ben</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Mustermann, Max</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Sampling, Susi</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dent, Stu</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Balance, Bobby</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Feature, Captain</td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>