Outline

1. What is Association Analysis?
2. Frequent Itemset Generation
3. Rule Generation
4. Interestingness Measures
5. Handling Continuous and Categorical Attributes
Association Analysis

• First algorithms developed in the early 90s at IBM by Agrawal & Srikant
• Motivation
 – Availability of barcode cash registers
Association Analysis

• initially used for Market Basket Analysis
 – to find how items purchased by customers are related
• later extended to more complex data structures
 – sequential patterns (see Data Mining II)
 – subgraph patterns
• and other application domains
 – life science
 – social science
 – web usage mining
Simple Approaches

• To find out if two items x and y are bought together, we can compute their correlation

• E.g., Pearson's correlation coefficient:

\[
\frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}}
\]

• Numerical coding:
 – 1: item was bought
 – 0: item was not bought

• \bar{x}: average of x (i.e., how often x was bought)
Correlation Analysis in RapidMiner

![Correlation Matrix](attachment:image.png)

<table>
<thead>
<tr>
<th>Attributes</th>
<th>ThinkPad X2</th>
<th>Asus EeePC</th>
<th>HP Laserjet</th>
<th>2 GB DDR3</th>
<th>8 GB DDR3</th>
<th>Lenovo Tab</th>
<th>Netbook-Sc</th>
<th>HP CE50</th>
<th>LT Laser M.</th>
<th>LT Minimaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ThinkPad X2</td>
<td>1</td>
<td>-1</td>
<td>0.356</td>
<td>-0.816</td>
<td>0.612</td>
<td>0.583</td>
<td>-0.667</td>
<td>0.356</td>
<td>0.167</td>
<td>-0.408</td>
</tr>
<tr>
<td>Asus EeePC</td>
<td>-1</td>
<td>1</td>
<td>-0.356</td>
<td>0.816</td>
<td>-0.612</td>
<td>-0.583</td>
<td>0.667</td>
<td>-0.356</td>
<td>-0.167</td>
<td>0.408</td>
</tr>
<tr>
<td>HP Laserjet</td>
<td>0.356</td>
<td>-0.356</td>
<td>1</td>
<td>-0.218</td>
<td>0.356</td>
<td>0.535</td>
<td>1</td>
<td>-0.089</td>
<td>-0.655</td>
<td>0.200</td>
</tr>
<tr>
<td>2 GB DDR3</td>
<td>-0.816</td>
<td>0.816</td>
<td>-0.218</td>
<td>1</td>
<td>-0.500</td>
<td>-0.816</td>
<td>0.816</td>
<td>-0.218</td>
<td>0</td>
<td>0.200</td>
</tr>
<tr>
<td>8 GB DDR3</td>
<td>0.612</td>
<td>-0.612</td>
<td>-0.327</td>
<td>-0.500</td>
<td>1</td>
<td>0.102</td>
<td>-0.408</td>
<td>-0.327</td>
<td>0.102</td>
<td>0</td>
</tr>
<tr>
<td>Lenovo Tab</td>
<td>0.583</td>
<td>-0.583</td>
<td>0.356</td>
<td>-0.816</td>
<td>1</td>
<td>0.102</td>
<td>0.356</td>
<td>0.167</td>
<td>0.408</td>
<td>0</td>
</tr>
<tr>
<td>Netbook-Sc</td>
<td>-0.667</td>
<td>0.667</td>
<td>-0.535</td>
<td>0.816</td>
<td>-0.408</td>
<td>-0.667</td>
<td>1</td>
<td>-0.535</td>
<td>0.167</td>
<td>0.408</td>
</tr>
<tr>
<td>HP CE50</td>
<td>0.356</td>
<td>-0.356</td>
<td>1</td>
<td>-0.218</td>
<td>0.356</td>
<td>0.535</td>
<td>1</td>
<td>-0.089</td>
<td>-0.655</td>
<td>0.200</td>
</tr>
<tr>
<td>LT Laser M.</td>
<td>0.167</td>
<td>-0.167</td>
<td>-0.089</td>
<td>0</td>
<td>0.102</td>
<td>-0.250</td>
<td>0.167</td>
<td>-0.089</td>
<td>1</td>
<td>-0.408</td>
</tr>
<tr>
<td>LT Minimaus</td>
<td>-0.408</td>
<td>0.408</td>
<td>-0.655</td>
<td>0.200</td>
<td>0</td>
<td>0</td>
<td>0.408</td>
<td>-0.655</td>
<td>-0.408</td>
<td>1</td>
</tr>
</tbody>
</table>
Correlation vs. Causality

http://xkcd.com/552/
Association Analysis

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction.

Market-Basket transactions

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Examples of Association Rules

{Diaper} → {Beer},
{Milk, Bread} → {Eggs, Coke},
{Beer, Bread} → {Milk},

Implication means co-occurrence, not causality!
Definition: Frequent Itemset

- **Itemset**
 - A collection of one or more items
 - Example: \{Milk, Bread, Diaper\}
 - k-itemset
 - An itemset that contains k items

- **Support count (σ)**
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

- **Support**
 - Fraction of transactions that contain an itemset
 - E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

- **Frequent Itemset**
 - An itemset whose support is greater than or equal to a \minsup threshold.
Definition: Association Rule

- **Association Rule**
 - An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets.
 - An association rule states that when X occurs, Y occurs with certain probability.

- **Rule Evaluation Metrics**
 - **Support** (s)
 Fraction of transactions that contain both X and Y.
 - **Confidence** (c)
 Measures how often items in Y appear in transactions that contain X.

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

\[
s(X \rightarrow Y) = \frac{|X \cup Y|}{|T|}
\]

\[
c(X \rightarrow Y) = \frac{s(X \cup Y)}{s(X)}
\]
Definition: Association Rule

- **Association Rule**
 - An implication expression of the form \(X \rightarrow Y \), where \(X \) and \(Y \) are itemsets
 - An association rule states **that** when \(X \) occurs, \(Y \) occurs with certain **probability**.

- **Rule Evaluation Metrics**
 - **Support** \((s) \)
 - Fraction of transactions that contain both \(X \) and \(Y \)
 - **Confidence** \((c) \)
 - Measures how often items in \(Y \) appear in transactions that contain \(X \)

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, Beer, Eggs</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer, Coke</td>
</tr>
<tr>
<td>4</td>
<td>Bread, Milk, Diaper, Beer</td>
</tr>
<tr>
<td>5</td>
<td>Bread, Milk, Diaper, Coke</td>
</tr>
</tbody>
</table>

Example:

\[\{ \text{Milk, Diaper} \} \Rightarrow \text{Beer} \]

\[
s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4
\]

\[
c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67
\]
Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support $\geq \text{minsup}$ threshold
 - confidence $\geq \text{minconf}$ threshold

- minsup and minconf are provided by the user

- Brute-force approach:
 1. List all possible association rules
 2. Compute the support and confidence for each rule
 3. Remove rules that fail the minsup and minconf thresholds

 \Rightarrow Computationally prohibitive due to large number of candidates!
Mining Association Rules

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Bread, Diaper, l</td>
</tr>
<tr>
<td>3</td>
<td>Milk, Diaper, Beer</td>
</tr>
</tbody>
</table>

Example of Rules:

\[
\{\text{Milk, Diaper}\} \rightarrow \{\text{Beer}\} \ (s=0.4, \ c=0.67) \\
\{\text{Milk, Beer}\} \rightarrow \{\text{Diaper}\} \ (s=0.4, \ c=1.0) \\
\{\text{Diaper, Beer}\} \rightarrow \{\text{Milk}\} \ (s=0.4, \ c=0.67) \\
\{\text{Beer}\} \rightarrow \{\text{Milk, Diaper}\} \ (s=0.4, \ c=0.67) \\
\{\text{Diaper}\} \rightarrow \{\text{Milk, Beer}\} \ (s=0.4, \ c=0.5) \\
\{\text{Milk}\} \rightarrow \{\text{Diaper, Beer}\} \ (s=0.4, \ c=0.5)
\]

Observations:

- All the above rules are binary partitions of the same itemset: \{\text{Milk, Diaper, Beer}\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

\[
s(X \rightarrow Y) = \frac{|X \cup Y|}{|T|}
\]
Apriori Algorithm: Basic Idea

• Two-step approach

• First: Frequent Itemset Generation
 – Generate all itemsets whose support ≥ minsup

• Second: Rule Generation
 – Generate high confidence rules from each frequent itemset
 – where each rule is a binary partitioning of a frequent itemset

• However: Frequent itemset generation is still computationally expensive....
Frequent Itemset Generation

Given \(d \) items, there are \(2^d \) candidate itemsets!
Brute-force Approach

• Example:
 – Amazon has 10 million books (i.e., Amazon Germany, as of 2011)
• That is \(2^{10000000}\) possible itemsets
• As a number:
 – \(9.04981... \times 10^{3010299}\)
 – That is: a number with 3 million digits!

• However:
 – most itemsets will not be important at all
 – e.g., books on Chinese calligraphy and data mining bought together
 – thus, smarter algorithms should be possible
Brute-force Approach

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database
- Match each transaction against every candidate

Complexity \(\sim O(NMw) \) \(\rightarrow \) Expensive since \(M = 2^d \)

A smarter algorithm is required
Reducing the Number of Candidates

- **Apriori Principle**

 If an itemset is frequent, then all of its subsets must also be frequent.

- Apriori principle holds due to the following property of the support measure:

 \[\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y) \]

 - Support of an itemset never exceeds the support of its subsets
 - This is known as the **anti-monotone** property of support
Illustrating the Apriori Principle

Found to be Infrequent

Pruned supersets
Illustrating the Apriori Principle

<table>
<thead>
<tr>
<th>Item</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td>4</td>
</tr>
<tr>
<td>Coke</td>
<td>2</td>
</tr>
<tr>
<td>Milk</td>
<td>4</td>
</tr>
<tr>
<td>Beer</td>
<td>3</td>
</tr>
<tr>
<td>Diaper</td>
<td>4</td>
</tr>
<tr>
<td>Eggs</td>
<td>1</td>
</tr>
</tbody>
</table>

No need to generate candidates involving Coke or Eggs.

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread, Milk}</td>
<td>3</td>
</tr>
<tr>
<td>{Bread, Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Bread, Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Milk, Beer}</td>
<td>2</td>
</tr>
<tr>
<td>{Milk, Diaper}</td>
<td>3</td>
</tr>
<tr>
<td>{Beer, Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

No need to generate candidate {Milk, Diaper, Beer}

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Bread, Milk, Diaper}</td>
<td>3</td>
</tr>
</tbody>
</table>

Minimum Support = 3
The Apriori Algorithm

1. Let k=1
2. Generate frequent itemsets of length 1
3. Repeat until no new frequent itemsets are identified
 1. Generate length (k+1) candidate itemsets from length k frequent itemsets; increase k
 2. Prune candidate itemsets that cannot be frequent because they contain subsets of length k that are infrequent (Apriori Principle)
 3. Count the support of each remaining candidate by scanning the DB
 4. Eliminate candidates that are infrequent, leaving only those that are frequent
Example: Finding frequent itemsets

```
minsup=0.5  Dataset T

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T100</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>T200</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>T300</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>T400</td>
<td>2, 5</td>
</tr>
</tbody>
</table>
```

1. scan T
 → Cand1: {1}:2, {2}:3, {3}:3, {4}:1, {5}:3
 → Freq1: {1}:2, {2}:3, {3}:3, {5}:3
 → Cand2: {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}

2. scan T
 → Cand2: {1,2}:1, {1,3}:2, {1,5}:1, {2,3}:2, {2,5}:3, {3,5}:2
 → Freq2: {1,3}:2, {2,3}:2, {2,5}:3, {3,5}:2
 → Cand3: {1,3}, {2,3}, {2,5}, {3,5}

3. scan T
 → Cand3: {2, 3, 5}:2
 → Freq3: {2, 3, 5}
```
Rule Generation

- Given a frequent itemset \( L \), find all non-empty subsets \( f \subset L \) such that \( f \rightarrow L - f \) satisfies the minimum confidence requirement.

Example Frequent Itemset:
\[ \{ \text{Milk, Diaper, Beer} \} \]

Example Rule:
\[ \{ \text{Milk, Diaper} \} \rightarrow \text{Beer} \]

\[
c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67
\]
Challenge: Large Number of Rules

If \{A,B,C,D\} is a frequent itemset, then the candidate rules are:

- $ABC \rightarrow D$, $ABD \rightarrow C$, $ACD \rightarrow B$, $BCD \rightarrow A$,
- $A \rightarrow BCD$, $B \rightarrow ACD$, $C \rightarrow ABD$, $D \rightarrow ABC$,
- $AB \rightarrow CD$, $AC \rightarrow BD$, $AD \rightarrow BC$, $BC \rightarrow AD$,
- $BD \rightarrow AC$, $CD \rightarrow AB$,

If $|L| = k$, then there are $2^k - 2$ candidate association rules (ignoring $L \rightarrow \emptyset$ and $\emptyset \rightarrow L$).
Rule Generation

- **How to efficiently generate rules from frequent itemsets?**
  - In general, confidence does not have an anti-monotone property
    \[ c(ABC \rightarrow D) \text{ can be larger or smaller than } c(AB \rightarrow D) \]
  - But confidence of rules generated from the same itemset has an anti-monotone property
  - e.g., \( L = \{A,B,C,D\} \):
    \[ c(ABC \rightarrow D) \geq c(AB \rightarrow CD) \geq c(A \rightarrow BCD) \]
  - Confidence is **anti-monotone w.r.t. number of items on the RHS of the rule**
Rule Generation

• Confidence is anti-monotone w.r.t. number of items on the RHS of the rule
  – i.e., “moving elements from left to right” cannot increase confidence
  – reason:

\[
\begin{align*}
  c(AB \rightarrow C) & := \frac{s(ABC)}{s(AB)} & c(A \rightarrow BC) & := \frac{s(ABC)}{s(A)} \\
  c(A \rightarrow BC) & := \frac{s(ABC)}{s(A)}
\end{align*}
\]

– Due to anti-monotone property of support, we know
  • \( S(AB) \leq S(A) \)
  – Hence
    • \( c(AB \rightarrow C) \geq C(A \rightarrow BC) \)
Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

- \( \text{join}(CD=>AB, BD=>AC) \)
  - would produce the candidate rule \( D=>ABC \)

- Prune rule \( D=>ABC \)
  - if its subset \( AD=>BC \) does not have high confidence

- All the required information for confidence computation has already been recorded during itemset generation.
  \[ c(X \rightarrow Y) := \frac{s(X \cup Y)}{s(X)} \]
  → No need to see the data anymore!
Complexity of Apriori Algorithm

• Expensive part is scanning the database
  – i.e., when counting the support of frequent itemsets
• The database is scanned once per pass of frequent itemset generation
  – one pass to count frequencies of 1-itemsets
  – one pass to count frequencies of 2-itemsets
  – etc.
• i.e., for frequent itemsets of size $\leq k$,
  – $k$ passes over the database are required
FP-growth Algorithm

• An alternative method for finding frequent itemsets
  – usually faster than Apriori
  – requires at most two passes over the database

• Use a compressed representation of the database using an FP-tree

• Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets
FP-Tree Construction

### After reading TID=1:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A,B}</td>
</tr>
<tr>
<td>2</td>
<td>{B,C,D}</td>
</tr>
<tr>
<td>3</td>
<td>{A,C,D,E}</td>
</tr>
<tr>
<td>4</td>
<td>{A,D,E}</td>
</tr>
<tr>
<td>5</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>6</td>
<td>{A,B,C,D}</td>
</tr>
<tr>
<td>7</td>
<td>{B,C}</td>
</tr>
<tr>
<td>8</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>9</td>
<td>{A,B,D}</td>
</tr>
<tr>
<td>10</td>
<td>{B,C,E}</td>
</tr>
</tbody>
</table>

### After reading TID=2:

The tree is updated as follows:

- After reading TID=1:
  - The root is null, and the path `A:1` is added.
  - The path `B:1` is added.

- After reading TID=2:
  - The path `B:1` is replaced with `B:2`.
  - The path `C:1` is added.
  - The path `D:1` is added.

The tree structure is adjusted accordingly.
FP-Tree Construction

After reading TID=3:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A,B}</td>
</tr>
<tr>
<td>2</td>
<td>{B,C,D}</td>
</tr>
<tr>
<td>3</td>
<td>{A,C,D,E}</td>
</tr>
<tr>
<td>4</td>
<td>{A,D,E}</td>
</tr>
<tr>
<td>5</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>6</td>
<td>{A,B,C,D}</td>
</tr>
<tr>
<td>7</td>
<td>{B,C}</td>
</tr>
<tr>
<td>8</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>9</td>
<td>{A,B,D}</td>
</tr>
<tr>
<td>10</td>
<td>{B,C,E}</td>
</tr>
</tbody>
</table>

counter is increased
FP-Tree Construction

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A,B}</td>
</tr>
<tr>
<td>2</td>
<td>{B,C,D}</td>
</tr>
<tr>
<td>3</td>
<td>{A,C,D,E}</td>
</tr>
<tr>
<td>4</td>
<td>{A,D,E}</td>
</tr>
<tr>
<td>5</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>6</td>
<td>{A,B,C,D}</td>
</tr>
<tr>
<td>7</td>
<td>{B,C}</td>
</tr>
<tr>
<td>8</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>9</td>
<td>{A,B,D}</td>
</tr>
<tr>
<td>10</td>
<td>{B,C,E}</td>
</tr>
</tbody>
</table>

Transaction Database

Pointers are used to assist frequent itemset generation

Header table

<table>
<thead>
<tr>
<th>Item</th>
<th>Pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>
FP-Tree Construction

• Properties of the FP-Tree
  – a very compact representation
  – fits in memory
    • even for larger transaction databases
    • more transactions of the same kind do not increase the tree size
  – can be optimized
    • sorting most frequent items first
    • good compression for many similar transactions
    • pruning all leaf nodes smaller than minSupport
Finding Patterns

• Traverse tree for each item
  – use pointers and sum counts
  – move up the tree
• E.g., minsup=3
  – itemsets ending in E:
    \{E\}, \{CE\}, \{BCE\}

WARNING: simplified illustration!
Finding Patterns

- Traverse tree for each item
  - use pointers and sum counts
  - move up the tree
- E.g., minsup=3
  - itemsets ending in D:
    - \{D\}, \{AD\},
    - \{BD\}, \{CD\}

WARNING: simplified illustration!
Finding Patterns

- Traverse tree for each item
  - use pointers and sum counts
  - move up the tree
- E.g., minsup=3
  - itemsets ending in C:
    - \{C\}, \{AC\}, \{BC\}, \{ABC\}
- Note:
  - \{CD\} is also frequent
  - but we are only looking for itemsets ending in C

WARNING: simplified illustration!
FP-Growth

• Scans the database only twice:
  – first scan counts all 1-itemsets
    • for ordering by most frequent (more compact tree)
    • and for removing itemsets below minup
  – second scan for constructing the FP-tree

• Finding patterns from the tree
  – illustration was simplified
  – actual algorithm recursively decomposes the tree into smaller subtrees
  – details: see books
Frequent Itemset Generation in Rapidminer

- **FP-Growth**
- **Parameters**
  - **find_min_number_of_itemsets**
  - **positive_value**
  - **min_support**
  - **max_items**
  - **must_contain**
Frequent Itemset Generation in Rapidminer

<table>
<thead>
<tr>
<th>No. of Sets: 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
Creating Association Rules in Rapidminer
Exploring Association Rules in Rapidminer

<table>
<thead>
<tr>
<th>No.</th>
<th>Premises</th>
<th>Conclusion</th>
<th>Support</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>278</td>
<td>marital-status = Never-married</td>
<td>class = &lt;=50K</td>
<td>0.310</td>
<td>0.957</td>
</tr>
<tr>
<td>266</td>
<td>age = range1 [-∞ - 31.500]</td>
<td>class = &lt;=50K</td>
<td>0.330</td>
<td>0.938</td>
</tr>
<tr>
<td>236</td>
<td>sex = Female</td>
<td>class = &lt;=50K</td>
<td>0.308</td>
<td>0.917</td>
</tr>
<tr>
<td>157</td>
<td>workclass = Private</td>
<td>class = &lt;=50K</td>
<td>0.510</td>
<td>0.775</td>
</tr>
<tr>
<td>154</td>
<td>native-country = United-States, workclass = Private</td>
<td>class = &lt;=50K</td>
<td>0.440</td>
<td>0.751</td>
</tr>
<tr>
<td>153</td>
<td>race = White, workclass = Private</td>
<td>class = &lt;=50K</td>
<td>0.418</td>
<td>0.749</td>
</tr>
<tr>
<td>150</td>
<td>native-country = United-States</td>
<td>class = &lt;=50K</td>
<td>0.646</td>
<td>0.736</td>
</tr>
<tr>
<td>149</td>
<td>native-country = United-States, relationship = Husband</td>
<td>class = &lt;=50K</td>
<td>0.376</td>
<td>0.732</td>
</tr>
<tr>
<td>148</td>
<td>race = White</td>
<td>class = &lt;=50K</td>
<td>0.614</td>
<td>0.721</td>
</tr>
<tr>
<td>147</td>
<td>native-country = United-States, race</td>
<td>class = &lt;=50K</td>
<td>0.556</td>
<td>0.715</td>
</tr>
<tr>
<td>146</td>
<td>sex = Male, workclass = Private</td>
<td>class = &lt;=50K</td>
<td>0.302</td>
<td>0.699</td>
</tr>
</tbody>
</table>
Interestingness Measures

- Association rule algorithms tend to produce too many rules
  - many of them are uninteresting or redundant
  - Redundant if \( \{A,B,C\} \to \{D\} \) and \( \{A,B\} \to \{D\} \)
    have same support & confidence

- Interestingness measures can be used to prune or rank the derived rules

- In the original formulation of association rules, support & confidence are the only interest measures used

- Later, various other measures have been proposed
  - See Tan/Steinbach/Kumar, Chapter 6.7
  - We will have a look at one: Lift
**Drawback of Confidence**

<table>
<thead>
<tr>
<th>Coffee</th>
<th>Coffee</th>
<th>Coffee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tea</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Tea</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>10</td>
</tr>
</tbody>
</table>

**Association Rule: Tea → Coffee**

- Confidence = \( \frac{s(\text{Tea} \rightarrow \text{Coffee})}{s(\text{Tea})} = \frac{15}{20} = 0.75 \)
- but \( s(\text{Coffee}) = 0.9 \)
  - Although confidence is high, rule is misleading
  - \( c(\text{Coffee} \rightarrow \overline{\text{Tea}}) = \frac{75}{80} = 0.9375 \)
The *lift* of an association rule $X \rightarrow Y$ is defined as:

$$Lift(X \rightarrow Y) = \frac{c(X \rightarrow Y)}{s(Y)}$$

- Ratio of confidence to support of consequent

**Interpretation:**

- if $lift > 1$, then $X$ and $Y$ are positively correlated
- if $lift < 1$, then $X$ and $Y$ are negatively correlated
- if $lift = 1$, then $X$ and $Y$ are independent.
Example: Lift

\[
\begin{array}{ccc}
\text{Coffee} & \text{Coffee} \\
\hline
\text{Tea} & 15 & 5 & 20 \\
\text{Tea} & 75 & 5 & 80 \\
\text{Tea} & 90 & 10 & 100 \\
\end{array}
\]

Association Rule: \( \text{Tea} \rightarrow \text{Coffee} \)

\[
c(\text{Tea} \rightarrow \text{Coffee}) = 0.75
\]

\[
s(\text{Coffee}) = 0.9
\]

\[
\Rightarrow \text{Lift} = \frac{0.75}{0.9} = 0.8333 \ (< 1, \therefore \text{negatively associated})
\]
There are lots of measures proposed in the literature. Some measures are good for certain applications, but not for others. Details: see literature (e.g., Tan et al.)

<table>
<thead>
<tr>
<th>#</th>
<th>Measure</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\phi$-coefficient</td>
<td>$\frac{P(A,B) - P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$</td>
</tr>
</tbody>
</table>
| 2  | Goodman-Kruskal’s (lambda)    | $\sum_{a} \max_{b} P(A|B_a) + \sum_{b} \max_{a} P(A|B_b) - \max_{a} P(A|B_a) - \max_{b} P(B|A_b)$ |}
| 3  | Odds ratio ($\alpha$)         | $\frac{P(A,B)P(A,B) - P(A)P(B)}{P(A,B)P(A,B) - P(A)P(B) + P(A,B)P(A,B)} = \frac{a-1}{a+1}$ | | | | | | | | | | |
| 4  | Yule’s Q                      | $\sum P(A,B)P(A,B) - P(A)P(B)P(A,B) = \sqrt{a+1}$                       |
| 5  | Yule’s Y                      | $\sum P(A,B)P(A,B)P(A,B) = \sqrt{a+1}$                                 |
| 6  | Kappa ($\kappa$)              | $\sum P(A,B)P(B|A) - P(A)P(B|A)P(B|A) = \sqrt{a+1}$                       |
| 7  | Mutual Information ($M$)       | $\sum P(A,B)P(B|A)P(B|A) = \sqrt{a+1}$                                 |
| 8  | J-Measure ($J$)               | $\max \left( \frac{P(A,B) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}}, \frac{P(A,B) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}} \right)$ |
| 9  | Gini index ($G$)              | $\max \left( \frac{P(A)P(B|A)^2 + P(B|A)^2 + P(A)P(B|\bar{A})^2 + P(B|\bar{A})^2} P(A)^2 - P(B)^2 \right)$ |
| 10 | Support ($s$)                 | $P(A,B) = \max \{ P(B|A), P(A|B) \}$                                    |
| 11 | Confidence ($c$)              | $\max \{ P(B|A), P(A|B) \}$                                           |
| 12 | Laplace ($L$)                 | $\max \left( \frac{NP(A,B)+1}{NP(A)+1}, \frac{NP(A,B)+1}{NP(B)+1} \right) \right)$ |
| 13 | Conviction ($V$)              | $\max \left( \frac{P(A,B)P(B|A) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}}, \frac{P(A,B) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}} \right)$ |
| 14 | Interest ($I$)                | $\max \left( \frac{P(A,B)P(B|A) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}}, \frac{P(A,B) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}} \right)$ |
| 15 | cosine ($f$)                  | $\frac{P(A,B)P(B|A)}{\sqrt{P(A)P(B)}}$                                |
| 16 | Piatesky-Shapiro’s (P.S)      | $P(A,B)P(A,B) - P(A)P(B)$                                              |
| 17 | Certainty factor ($P$)        | $\max \left( \frac{P(B|A)P(B|A) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}}, \frac{P(A,B) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}} \right)$ |
| 18 | Added Value ($AV$)            | $\max (P(B|A) - P(B), P(A|B) - P(A))$, $\max (P(B|A) - P(B), P(A|B) - P(A))$ |
| 19 | Collective strength ($S$)     | $\frac{P(A,B)P(B|A) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}}, \frac{P(A,B) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}} \right)$ |
| 20 | Jaccard ($\zeta$)             | $\max (P(A,B)P(B|A) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}), \frac{P(A,B) \log \frac{P(B|A)}{P(B|\bar{A})} + P(A,B) \log \frac{P(B|\bar{A})}{P(B|A)}} \right)$ |
| 21 | Klugman ($K$)                 | $\sqrt{P(A,B) \max \{ P(B|A) - P(B), P(A|B) - P(A) \}}$}
### Handling Continuous and Categorical Attributes

**How to apply association analysis formulation to non-asymmetric binary variables?**

<table>
<thead>
<tr>
<th>Session Id</th>
<th>Country</th>
<th>Session Length (sec)</th>
<th>Number of Web Pages viewed</th>
<th>Gender</th>
<th>Browser Type</th>
<th>Buy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USA</td>
<td>982</td>
<td>8</td>
<td>Male</td>
<td>IE</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>China</td>
<td>811</td>
<td>10</td>
<td>Female</td>
<td>Netscape</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>USA</td>
<td>2125</td>
<td>45</td>
<td>Female</td>
<td>Mozilla</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Germany</td>
<td>596</td>
<td>4</td>
<td>Male</td>
<td>IE</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Australia</td>
<td>123</td>
<td>9</td>
<td>Male</td>
<td>Mozilla</td>
<td>No</td>
</tr>
</tbody>
</table>

**Example of Association Rule:**

\[
\{\text{Number of Pages} \in [5, 10) \land (\text{Browser} = \text{Mozilla})\} \rightarrow \{\text{Buy} = \text{No}\}
\]
Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables
- Introduce a new “item” for each distinct attribute-value pair
  - Example: replace Browser Type attribute with
    - Browser Type = Internet Explorer
    - Browser Type = Mozilla
Handling Categorical Attributes

• Potential Issues
  – What if attribute has many possible values
    • Many of the attribute values may have very low support
    • Potential solution: Aggregate the low-support attribute values
  – What if distribution of attribute values is highly skewed
    • Example: 95% of the visitors have Buy = No
    • Most of the items will be associated with (Buy=No) item
    • Potential solution: drop the highly frequent items
Handling Continuous Attributes

- Transform continuous attribute into binary variables using discretization
  - Equal-width binning
  - Equal-frequency binning

- Issue: Size of the intervals affects support & confidence

\[
\{\text{Refund} = \text{No}, \ (\text{Income} = 51,250)\} \rightarrow \{\text{Cheat} = \text{No}\}
\]
\[
\{\text{Refund} = \text{No}, \ (60K \leq \text{Income} \leq 80K)\} \rightarrow \{\text{Cheat} = \text{No}\}
\]
\[
\{\text{Refund} = \text{No}, \ (0K \leq \text{Income} \leq 1B)\} \rightarrow \{\text{Cheat} = \text{No}\}
\]

- Too small intervals: not enough support
- Too large intervals: not enough confidence
Effect of Support Distribution

• Many real data sets have skewed support distribution

![Support distribution of a retail data set](image)
Effect of Support Distribution

• How to set the appropriate *minsup* threshold?
  – If *minsup* is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
  – If *minsup* is set too low, it is computationally expensive and the number of itemsets is very large

• Using a single minimum support threshold may not be effective
Multiple Minimum Support

• How to apply multiple minimum supports?
  – MS(i): minimum support for item i
  – e.g.: MS(Milk) = 5%, MS(Coke) = 3%, MS(Broccoli) = 0.1%, MS(Salmon) = 0.5%
  – MS(\{Milk, Broccoli\}) = \min(MS(Milk), MS(Broccoli)) = 0.1%
  – Challenge: Support is no longer anti-monotone
    • Suppose: Support(Milk, Coke) = 1.5% and Support(Milk, Coke, Broccoli) = 0.5%
      \{Milk, Coke\} is infrequent but \{Milk, Coke, Broccoli\} is frequent
    – Requires variations of Apriori algorithm
    – Details: see literature
Wrap-up

• Association Analysis:
  – discovering patterns in data
  – patterns are described by rules

• Apriori algorithm:
  – Finds rules with minimum support (i.e., number of transactions)
  – and minimum confidence (i.e., strength of the implication)

• You'll play around with it in the upcoming exercise...
Questions?