Data Mining I
Cluster Analysis

Heiko Paulheim
Outline

1. What is Cluster Analysis?
2. Applications for Clustering
3. k-Means Clustering
4. Hierarchical Clustering
5. Density-based Clustering
6. Proximity Measures
What is Cluster Analysis?

• Finding groups of objects such that
 – the objects in a group will be similar to one another
 – and different from the objects in other groups.

• Goal: Get a better understanding of the data.
Cluster Analysis as Unsupervised Learning

• **Supervised learning**: Discover patterns in the data that relate data attributes with a target (class) attribute
 – The set of classes is known before
 – Class attributes are usually provided by human annotators
 – Patterns are used for prediction of the target attribute for new data

• **Unsupervised learning**: The data has no target attribute
 – We want to explore the data to find some intrinsic structures in it
 – The set of classes/clusters is not known before
 – Cluster Analysis and Association Rule Mining are unsupervised learning tasks
Types of Clusterings

• Partitional Clustering
 – A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset

• Hierarchical Clustering
 – A set of nested clusters organized as a hierarchical tree
Aspects of Cluster Analysis

- **Clustering algorithm**
 - Partitional Algorithms
 - Hierarchical Algorithms
 - Density-based Algorithms
 - ...

- **Proximity (similarity, or dissimilarity) measure**
 - Euclidean Distance
 - Cosine Similarity
 - Domain-specific Similarity Measures
 - ...

- **Clustering Quality**
 - Intra-clusters distance \(\Rightarrow \) minimized
 - Inter-clusters distance \(\Rightarrow \) maximized
Notion of a Cluster can be Ambiguous

How many clusters?

- Six Clusters
- Two Clusters
- Four Clusters

The usefulness of a clustering depends on the goals of the analysis!
Applications: Market Research

- Identify different groups of customers
Application: Product Grouping

- Identify offers of same (or similar) products, e.g., on ebay
Applications: Social Network Analysis

- Identifying communities of people, e.g., with similar interests
Applications: Grouping Search Engine Results

- Automatically find groups of related pages in the result set
Applications: Image Recognition

- Identify portions of an image that belong to the same object
K-Means Clustering

• Partitional clustering approach
• Each cluster is associated with a centroid (center point)
• Each point is assigned to the cluster with the closest centroid
• Number of clusters, K, must be specified manually
K-Means Clustering

• Basic Algorithm:

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don’t change
K-Means Example, Step 1

Pick 3 initial cluster centers (randomly)
K-Means Example, Step 2

Assign each point to the closest cluster center.
K-Means Example, Step 3

Move each cluster center to the mean of each cluster.
Reassign points closest to a different new cluster center

Q: Which points are reassigned?
K-Means Example, Step 4

A: Two points are reassigned
K-Means Example, Step 5

Re-compute cluster means
Move cluster centers to cluster means.
Alternative Convergence Criteria

• no (or minimum) re-assignments of data points to different clusters
• no (or minimum) change of centroids, or
• minimum decrease in the sum of squared errors (SSE)
 – see next slide
• Stop after X iterations
Evaluating K-Means Clusterings

• The most common cohesion measure is the Sum of Squared Error (SSE)
 – For each point, the error is the distance to the nearest centroid
 – To get SSE, we square these errors and sum them.

\[SSE = \sum_{j=1}^{k} \sum_{x \in C_j} \text{dist}(x, m_j)^2 \]

• \(C_j \) is the j-th cluster
• \(m_j \) is the centroid of cluster \(C_j \) (the mean vector of all the data points in \(C_j \))
• dist\((x, m_j)\) is the distance between data point \(x \) and centroid \(m_j \)

• Given several clusterings, we should prefer the one with the smallest SSE
Illustration: Sum of Squared Error

- Clustering problem given:
- Good solution:
 - i.e., small distances to centroid
- Not so good solution:
 - i.e., larger distances to centroid
Weaknesses of K-Means: Initial Seeds

- Results can vary significantly depending on initial choice of seeds (number and position)
Weaknesses of K-Means: Initial Seeds

- If we use different seeds, we get good results.

(A). Random selection of k seeds (centroids)

(B). Iteration 1

(C). Iteration 2
Weaknesses of K-Means: Initial seeds

- Approaches to increase the chance of finding good clusters:
 - restart a number of times with different random seeds
 - chose the resulting clustering with the smallest sum of squared error (SSE)
 - run k-means with different numbers of k
 - Note that the SSE of k-means with different values of k cannot be compared to each other!
 - Think: what happens for $k \rightarrow n$ (number of examples)?
 - X-means
 - start with small k, then split large clusters and see if result improves
Weaknesses of K-Means: Outlier Handling

(A): Undesirable clusters

(B): Ideal clusters
Weaknesses of K-Means: Outlier Handling

• Possible remedy:
 – remove data points far away from centroids
 – to be safe: monitor these possible outliers over a few iterations and then decide to remove them

• Other remedy: random sampling
 – choose a small subset of the data points
 – the chance of selecting an outlier is very small if the data set is large enough
 – after determining the centroids based on samples, assign the rest of the data points
 – also a method for improving runtime performance!
K-Medoids

• K-Medoids is a K-Means variation that uses the medians of each cluster instead of the mean

• Medoids are the most central existing data points in each cluster

• K-Medoids is more robust against outliers as the median is not affected by extreme values:
 – Mean and Median of 1, 3, 5, 7, 9 is 5
 – Mean of 1, 3, 5, 7, 1009 is 205
 – Median of 1, 3, 5, 7, 1009 is 5
K-Means Clustering Summary

• Advantages
 – Simple, understandable
 – Efficient time complexity: \(O(t \times k \times n)\)
 • \(n\): number of data points
 • \(k\): number of clusters
 • \(t\): number of iterations

• Disadvantages
 – Must pick number of clusters before hand
 – All items are forced into a cluster
 – Sensitive to outliers
 – Sensitive to initial seeds
K-Means Clustering in RapidMiner
K-Medoids Clustering in RapidMiner
X-means Clustering in RapidMiner

- Add cluster attribute
- Add as label
- Remove unlabeled
- Determine good start values
- Measure types: NumericalMeasures
- Numerical measure: EuclideanDistance
- Clustering algorithm: KMeans
- Max runs: 10
- K min: 2
- K max: 60
DBSCAN

• DBSCAN is a density-based algorithm
 – Density = number of points within a specified radius (Eps)
• Divides data points in three classes:
 – A point is a core point if it has more than a specified number of points (MinPts) within Eps
 • These are points that are at the interior of a cluster
 – A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 – A noise point is any point that is not a core point or a border point
DBSCAN: Core, Border, and Noise Points

- **Core Point**
- **Border Point**
- **Noise Point**

- $Eps = 1$
- $MinPts = 4$
DBSCAN: Illustrative Example
DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points

```python
current_cluster_label ← 1
for all core points do
    if the core point has no cluster label then
        current_cluster_label ← current_cluster_label + 1
        Label the current core point with cluster label current_cluster_label
    end if
    for all points in the Eps-neighborhood, except i^{th} the point itself do
        if the point does not have a cluster label then
            Label the point with cluster label current_cluster_label
        end if
    end for
end for
```
perform recursion for all points in the Eps-neighborhood of the point
DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4
When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes
When DBSCAN Does NOT Work Well

Original Points

• Varying densities
• High-dimensional data

(MinPts=4, Eps=9.75)

(MinPts=4, Eps=9.92)
DBSCAN: Determining EPS and MinPts

- Idea: for points in a cluster, their k^{th} nearest neighbors are at roughly the same distance.
- Noise points have the k^{th} nearest neighbor at farther distance.
- So, plot sorted distance of every point to its k^{th} nearest neighbor.
DBScan in RapidMiner
Hierarchical Clustering

• Produces a set of nested clusters organized as a hierarchical tree.

• Can be visualized as a Dendrogram
 – A tree like diagram that records the sequences of merges or splits.
 – The y-axis displays the former distance between merged clusters.
Strengths of Hierarchical Clustering

- We do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by ‘cutting’ the dendogram at the proper level

- May be used to look for meaningful taxonomies
 - Taxonomies in life sciences
 - Taxonomy of customer groups
Starting Situation

- Start with clusters of individual points and a proximity matrix

```
<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
<th>p5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Proximity Matrix
Intermediate Situation

- After some merging steps, we have a number of clusters
- We want to keep on merging the two closest clusters (C2 and C5?)
How to Define Inter-Cluster Similarity?

Possible approaches:

- Single Link (MIN)
- Complete Link (MAX)
- Group Average
- Distance Between Centroids
Cluster Similarity: Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters.
- Determined by one pair of points, i.e., by one link in the proximity graph.
Example: Single Link

Nested Clusters

Dendrogram
Cluster Similarity: Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters.
- Determined by all pairs of points in the two clusters.
Example: Complete Linkage

Nested Clusters

Dendrogram
Single Link vs. Complete Linkage

- **Single Link:**
 - Pro: Can handle non-elliptic shapes
 - Con: Sensitive to outliers

- **Complete Linkage:**
 - Pro: Less sensitive to noise and outliers
 - Con: Biased towards globular clusters
 - Con: Tends to break large clusters
Cluster Similarity: Group Average

• Proximity of two clusters is the average of pair-wise proximity between points in the two clusters.

\[
\text{proximity}(\text{Cluster}_i, \text{Cluster}_j) = \frac{\sum_{p_i \in \text{Cluster}_i, p_j \in \text{Cluster}_j} \text{proximity}(p_i, p_j)}{|\text{Cluster}_i| \times |\text{Cluster}_j|}
\]

• Need to use average connectivity for scalability since total proximity favors large clusters
Example: Group Average

Nested Clusters

Dendrogram
Hierarchical Clustering: Group Average

• Compromise between Single and Complete Link

• Strengths
 – Less susceptible to noise and outliers

• Limitations
 – Biased towards globular clusters
Hierarchical Clustering: Problems & Limitations

- Greedy algorithm:
 - decision taken (i.e., merge two clusters) cannot be undone

- Different variants have problems with one or more of the following
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

- High Space and Time Complexity
 - $O(N^2)$ space since it uses the proximity matrix (N: number of data points)
 - $O(N^3)$ time in many cases
 - N steps processing the similarity matrix (N^2)
 - Complexity can be reduced to $O(N \log(N))$ time for some approaches
Agglomerative Clustering in RapidMiner

- Creates Hierarchical Clustering
- Flattens hierarchy to given number of clusters
Proximity Measures

• So far, we have seen different clustering algorithms
 – all of which rely on distance (proximity, similarity, ...) measures

• Similarity
 – Numerical measure of how alike two data objects are (higher: more alike)
 – Often falls in the range [0,1]

• Dissimilarity (or distance)
 – Numerical measure of how different are two data objects (higher: less alike)
 – Minimum dissimilarity is often 0
 – Upper limit varies

• A wide range of different measures is used depending on the requirements of the application
Proximity of Single Attributes

<table>
<thead>
<tr>
<th>Attribute Type</th>
<th>Dissimilarity</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>(d = \begin{cases} 0 & \text{if } p = q \ 1 & \text{if } p \neq q \end{cases})</td>
<td>(s = \begin{cases} 1 & \text{if } p = q \ 0 & \text{if } p \neq q \end{cases})</td>
</tr>
<tr>
<td>Ordinal</td>
<td>(d = \frac{</td>
<td>p-q</td>
</tr>
<tr>
<td>Interval or Ratio</td>
<td>(d =</td>
<td>p-q</td>
</tr>
</tbody>
</table>

Similarity and dissimilarity for simple attributes

p and q are the attribute values for two data objects
Proximity of Data Points

• All those measures cover the proximity of single attribute values
• But we usually have data points with many attributes
 – e.g., age, height, weight, sex...
• Thus, we need proximity measures for data points
Euclidean Distance

• Definition:

\[\text{dist} = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}\]

- Where \(n\) is the number of dimensions (attributes) and \(p_k\) and \(q_k\) are the \(k^{\text{th}}\) attributes of data objects \(p\) and \(q\).

• More generally: \(L_p\) norm:

\[\text{dist} = \left(\sum_{k=1}^{n} (p_k - q_k)^p\right)^{\frac{1}{p}}\]
L₁ vs. L₂ Norm

• L₁ norm: also called Manhattan distance
 – minimum distance to go from one crossing to another
 – in a squared city (like Manhattan)

• L₂ norm: Euclidean Distance

• Example:
 – L₁ = 7
 – L₂ = 5
Caution: Pitfalls!

- Let us try to cluster the German federal states
- We have to determine the distance, e.g., between
 - Baden-Württemberg
 - population = 10,569,111
 - area = 35,751.65 km²
 - Bavaria
 - population = 12,519,571
 - area = 70,549.44 km²

- Euclidean = \[\sqrt{(10,569,111 - 12,519,571)^2 + (35,751.65 - 70,549.44)^2} \]
 \[= \sqrt{4.090.344.451.600 + 1.210.886.188} \]
Caution: Pitfalls!

- Let us try to cluster the German federal states
- We have to determine the distance, e.g., between
 - Baden-Württemberg
 - population = 10,569,111
 - area = 35,751,650,000 m²
 - Bavaria
 - population = 12,519,571
 - area = 70,549,440,000 m²
- Euclidean =
 \[\sqrt{(10,569,111 - 12,519,571)^2 + (35,751,650,000 - 70,549,440,000)^2} \]

 \[= \sqrt{4.090 .344 .451 .600 + 1.210 .886 .188 .884 .100 .000 .000} \]
Caution: Pitfalls!

• We are easily comparing apples and oranges
 – and changing units of measurement changes the clustering result!
 – imagine: the same dataset processed in Europe (metric units) and the US (imperial units)

• Recommendation:
 – use normalization before clustering
 – generally: for all data mining algorithms involving distances

Mars orbiter worth $125M
Normalizing Attribute Values in RapidMiner

![Diagram of RapidMiner process with retrieve, normalize, and clustering nodes, and parameter settings for normalize node: attribute filter type set to subset, attributes selected, method set to range transformation, min set to 0.0, max set to 1.0.]
Similarity of Binary Attributes

• Common situation is that objects, p and q, have only binary attributes
 – e.g., customer bought an item (yes/no)

• Compute similarities using the following quantities
 – M01 = the number of attributes where p was 0 and q was 1
 – M10 = the number of attributes where p was 1 and q was 0
 – M00 = the number of attributes where p was 0 and q was 0
 – M11 = the number of attributes where p was 1 and q was 1
Symmetric Binary Attributes

- A binary attribute is **symmetric** if both of its states (0 and 1) have equal importance, and carry the same weights, e.g., male and female of the attribute Gender

- Similarity measure: **Simple Matching Coefficient**

\[
SMC(x_i, x_j) = \frac{M_{11} + M_{00}}{M_{01} + M_{10} + M_{11} + M_{00}}
\]

Number of matches / number of all attributes values
Asymmetric Binary Attributes

Asymmetric: If one of the states is more important or more valuable than the other.
- By convention, state 1 represents the more important state.
- 1 is typically the rare or infrequent state.
- Example: Shopping Basket, Word/Document Vector

Similarity measure: Jaccard Coefficient

\[
J(x_i, x_j) = \frac{M_{11}}{M_{01} + M_{10} + M_{11}}
\]

Number of 11 matches / number of not-both-zero attributes values
SMC versus Jaccard: Example

\[\begin{align*}
p &= 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\
q &= 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \\
\end{align*} \]

\[\begin{align*}
M_{01} &= 2 \quad \text{(the number of attributes where } p \text{ was 0 and } q \text{ was 1)} \\
M_{10} &= 1 \quad \text{(the number of attributes where } p \text{ was 1 and } q \text{ was 0)} \\
M_{00} &= 7 \quad \text{(the number of attributes where } p \text{ was 0 and } q \text{ was 0)} \\
M_{11} &= 0 \quad \text{(the number of attributes where } p \text{ was 1 and } q \text{ was 1)} \\
\end{align*} \]

\[\begin{align*}
\text{SMC} &= \frac{M_{11} + M_{00}}{M_{01} + M_{10} + M_{11} + M_{00}} = \frac{0 + 7}{2 + 1 + 0 + 7} = 0.7 \\
J &= \frac{M_{11}}{M_{01} + M_{10} + M_{11}} = \frac{0}{2 + 1 + 0} = 0 \\
\end{align*} \]

example interpretation:
- p bought item 1
- q bought item 7 and 10

J: same items bought \implies\ similar customers
SMC: same items *not* bought \implies\ similar customers
SMC vs. Jaccard

• Which of the two measures would you use
 – ...for a dating agency?
 • hobbies
 • favorite bands
 • favorite movies
 • ...

 – ...for the Wahl-O-Mat
 • (dis-)agreement with political statements
 • recommendation for voting
Take Home Messages

• Clustering groups similar objects
 – for analyzing the data at hand
• We know partitional and hierarchical clustering
• All clustering methods rely on distances
 – there are different distance functions
 – normalization is essential
Questions?