Data Mining I
Classification, Part 2

Heiko Paulheim
Outline

1. What is Classification? ✓
2. k Nearest Neighbors ✓
3. Naïve Bayes ✓
4. Decision Trees
5. Evaluating Classification
6. The Overfitting Problem
7. Rule Learning
8. Other Classification Approaches
9. Parameter Tunining
Lazy vs. Eager Learning

- Both k-NN and Naïve Bayes are “lazy” methods
- They do not build an explicit model!
 - “learning” is only performed on demand for unseen records
Today: Eager Learning

• Actually, we have two goals
 – classify unseen instances
 – learn a model

• Model
 – explains how to classify unseen instances
 – sometimes: interpretable by humans
Decision Tree Classifiers

Training Data

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Splitting Attributes

Terminal node = decision

Model: Decision Tree

Heiko Paulheim
Another Example of a Possible Decision Tree

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

There can be more than one tree that fits the same data!
• Border line between two neighboring regions of different classes is known as decision boundary

• Decision boundary is parallel to axes because test condition involves a single attribute at-a-time
Applying a Decision Tree to Test Data

Start from the root of tree.

Refund

Yes

No

MarSt

Single, Divorced

Married

TaxInc

< 80K

> 80K

NO

YES

Test Data

<table>
<thead>
<tr>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Married</td>
<td>80K</td>
<td>?</td>
</tr>
</tbody>
</table>

Assign Cheat to “No”
Decision Tree Induction

• How to learn a decision Tree from test data?
• Finding an optimal decision tree is NP-hard
• Tree building algorithms use a greedy, top-down, recursive partitioning strategy to induce a reasonable solution
• The algorithms split the records based on an attribute test that optimizes a certain criterion
• Many different algorithms have been proposed:
 – Hunt’s Algorithm
 – ID3
 – CHAID
 – C4.5
General Structure of Hunt’s Algorithm

- Let D_t be the set of training records that reach a node t.
- General Procedure:
 - If D_t contains only records that belong to the same class y_t, then t is a leaf node labeled as y_t.
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
 - Recursively apply the procedure to each subset.
 - If D_t is an empty set, then t is a leaf node labeled by the default class, y_d.

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Hunt’s Algorithm

Data → Refund

Refund: Yes → Don’t Cheat

Refund: No → ??

Don’t Cheat

Marital Status

Yes → Refund

Refund: Yes → Don’t Cheat

Refund: No → Single, Divorced

??

Marital Status: Single, Divorced

Married → Refund

Refund: Yes → Don’t Cheat

Refund: No → Married

Marital Status: Married

??

Marital Status: Single, Divorced

Taxable Income

< 80K → Don’t Cheat

≥ 80K → Cheat

??

Taxable Income

1. Yes, Single, 125K → No

2. No, Married, 100K → No

3. No, Single, 70K → No

4. Yes, Married, 120K → No

5. No, Divorced, 95K → Yes

6. No, Married, 60K → No

7. Yes, Divorced, 220K → No

8. No, Single, 85K → Yes

9. No, Married, 75K → No

10. No, Single, 90K → Yes

Heiko Paulheim
Tree Induction Issues

1. Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?

2. Determine when to stop splitting
How to Specify the Attribute Test Condition?

• Depends on attribute types
 – Nominal
 – Ordinal
 – Continuous

• Depends on number of ways to split
 – 2-way split
 – Multi-way split
Splitting Based on Nominal Attributes

- **Multi-way split:** Use as many partitions as distinct values

 ![Multi-way split diagram]

- **Binary split:** Divides values into two subsets. Need to find optimal partitioning

 ![Binary split diagram]
Splitting Based on Ordinal Attributes

- **Multi-way split:** Use as many partitions as distinct values.
 - Size
 - Small
 - Medium
 - Large

- **Binary split:** Divides values into two subsets, while keeping the order. Need to find optimal partitioning.
 - Size
 - {Small, Medium}
 - {Large}
 - OR
 - {Small}
 - {Medium, Large}
Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Heiko Paulheim
Splitting Based on Continuous Attributes

• Different ways of handling

 – Discretization to form an ordinal categorical attribute
 • equal-interval binning
 • equal-frequency binning
 • binning based on user-provided boundaries

 – Binary Decision: \((A < v)\) or \((A \geq v)\)
 • usually sufficient in practice
 • consider all possible splits
 • find the best cut based on a purity measure (see below)
 • can be computationally expensive
Discretization Example

- Attribute values (for one attribute e.g., age):
 - 0, 4, 12, 16, 16, 18, 24, 26, 28

- Equal-width binning – for bin width of e.g., 10:
 - Bin 2: 12, 16, 16, 18 \([10,20)\) bin
 - Bin 3: 24, 26, 28 \([20,+)\) bin
 - Bin 1: 0, 4 \([-\infty,10)\) bin

- Equal-frequency binning – for bin density of e.g., 3:
 - Bin 1: 0, 4, 12 \([-\infty,14)\) bin
 - Bin 2: 16, 16, 18 \([14,21)\) bin
 - Bin 3: 24, 26, 28 \([21,+)\) bin

- \(\infty\) denotes negative infinity, \(+\infty\) positive infinity
How to determine the Best Split?

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?
How to determine the Best Split?

- Nodes with **homogeneous** class distribution are preferred.
- Need a measure of node impurity:

 | C0: 5 | C0: 9 |
 | C1: 5 | C1: 1 |

 Non-homogeneous,
 High degree of impurity
 Homogeneous,
 Low degree of impurity

- Common measures of node impurity:
 - Gini Index
 - Entropy
 - Misclassification error
Gini Index

• Named after Corrado Gini (1885-1965)
• Used to measure the distribution of income
 – 1: somebody gets everything
 – 0: everybody gets an equal share
Measure of Impurity: GINI

- Gini Index for a given node t:

$$ GINI(t) = 1 - \sum_{j} [p(j | t)]^2 $$

(NOTE: $p(j | t)$ is the relative frequency of class j at node t).

- Maximum $(1 - 1/n_c)$ when records are equally distributed among all classes, implying least interesting information

- Minimum (0.0) when all records belong to one class, implying most interesting information

<table>
<thead>
<tr>
<th>C1</th>
<th>0</th>
<th>C1</th>
<th>1</th>
<th>C1</th>
<th>2</th>
<th>C1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>6</td>
<td>C2</td>
<td>5</td>
<td>C2</td>
<td>4</td>
<td>C2</td>
<td>3</td>
</tr>
<tr>
<td>Gini=0.000</td>
<td>Gini=0.278</td>
<td>Gini=0.444</td>
<td>Gini=0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples for computing GINI

The Gini index is a measure of statistical dispersion. It is defined as

\[
GINI(t) = 1 - \sum_{j} [p(j \mid t)]^2
\]

where \(p(j \mid t) \) is the probability of an event being in class \(j \) given the feature \(t \).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0</td>
<td>P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 Gini = 1 – P(C1)^2 – P(C2)^2 = 1 – 0 – 1 = 0</td>
</tr>
<tr>
<td>C2</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>P(C1) = 1/6 P(C2) = 5/6 Gini = 1 – (1/6)^2 – (5/6)^2 = 0.278</td>
</tr>
<tr>
<td>C2</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2</td>
<td>P(C1) = 2/6 P(C2) = 4/6 Gini = 1 – (2/6)^2 – (4/6)^2 = 0.444</td>
</tr>
<tr>
<td>C2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Splitting Based on GINI

• When a node p is split into k partitions (children), the quality of split is computed as

\[GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i) \]

– where $n_i =$ number of records at child i,
– $n =$ number of records at node p.

• Intuition:
 – The GINI index of each partition is weighted
 – according to the partition's size
Binary Attributes: Computing GINI Index

- Splits into two partitions

Gini(N1)
= 1 − \((5/7)^2 − (2/7)^2\)
= 0.408

Gini(N2)
= 1 − \((1/5)^2 − (4/5)^2\)
= 0.320

Gini(Children)
= 7/12 * 0.408 + 5/12 * 0.320
= 0.371
Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

<table>
<thead>
<tr>
<th>CarType</th>
<th>Family</th>
<th>Sports</th>
<th>Luxury</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gini</td>
<td>0.660</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two-way split (find best partition of values)

<table>
<thead>
<tr>
<th>CarType</th>
<th>{Sports, Luxury}</th>
<th>{Family}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Gini</td>
<td>0.800</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CarType</th>
<th>{Sports}</th>
<th>{Family, Luxury}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Gini</td>
<td>0.685</td>
<td></td>
</tr>
</tbody>
</table>
Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values = Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, \(A < v \) and \(A \geq v \)
- Simple method to choose best \(v \)
 - For each \(v \), scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Continuous Attributes: Computing Gini Index

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

<table>
<thead>
<tr>
<th>Cheat</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxable Income</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>75</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>120</td>
<td>125</td>
<td>172</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td><=</td>
<td>></td>
<td><=</td>
<td>></td>
<td><=</td>
<td>></td>
<td><=</td>
<td>></td>
<td><=</td>
<td>></td>
<td><=</td>
<td>></td>
</tr>
<tr>
<td>55</td>
<td>65</td>
<td>72</td>
<td>80</td>
<td>87</td>
<td>92</td>
<td>97</td>
<td>110</td>
<td>122</td>
<td>172</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Gini</td>
<td>0.420</td>
<td>0.400</td>
<td>0.375</td>
<td>0.343</td>
<td>0.417</td>
<td>0.400</td>
<td>0.300</td>
<td>0.343</td>
<td>0.375</td>
<td>0.400</td>
<td>0.420</td>
</tr>
</tbody>
</table>
Continuous Attributes: Computing Gini Index

- Note: it is enough to compute the GINI for those positions where the label changes!

<table>
<thead>
<tr>
<th>Cheat</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Taxable Income</th>
<th>60</th>
<th>70</th>
<th>75</th>
<th>85</th>
<th>90</th>
<th>95</th>
<th>100</th>
<th>120</th>
<th>125</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td><= ></td>
</tr>
</tbody>
</table>

Yes	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0		
No	0	7	1	6	2	5	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini	0.420	0.400	0.375	0.343	0.417	0.400	**0.300**	0.343	0.375	0.400	0.420									
Alternative Splitting Criteria: Information Gain

• Entropy at a given node t:

\[
\text{Entropy}(t) = -\sum_{j} p(j \mid t) \log_2 p(j \mid t)
\]

(Note: $p(j \mid t)$ is the relative frequency of class j at node t).

– Measures homogeneity of a node
 • Maximum (\log nc) when records are equally distributed among all classes implying least information
 • Minimum (0.0) when all records belong to one class, implying most information

– Entropy based computations are similar to the GINI index computations
Splitting Based on Information Gain

Information Gain:

\[
GAIN_{\text{split}} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} \ Entropy(i) \right)
\]

- Parent Node, \(p \) is split into \(k \) partitions;
- \(n_i \) is number of records in partition \(i \)
 - Measures reduction in entropy achieved because of the split
 - Choose the split that achieves most reduction (maximizes GAIN)
 - Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure
 - e.g., split by ID attribute
How to Find the Best Split

Before Splitting:

<table>
<thead>
<tr>
<th></th>
<th>C0</th>
<th>N_{00}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>N_{01}</td>
<td></td>
</tr>
</tbody>
</table>

M0

A?

Yes

Node N1

<table>
<thead>
<tr>
<th></th>
<th>C0</th>
<th>N_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>N_{11}</td>
<td></td>
</tr>
</tbody>
</table>

M1

No

Node N2

<table>
<thead>
<tr>
<th></th>
<th>C0</th>
<th>N_{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>N_{21}</td>
<td></td>
</tr>
</tbody>
</table>

M2

B?

Yes

Node N3

<table>
<thead>
<tr>
<th></th>
<th>C0</th>
<th>N_{30}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>N_{31}</td>
<td></td>
</tr>
</tbody>
</table>

M3

No

Node N4

<table>
<thead>
<tr>
<th></th>
<th>C0</th>
<th>N_{40}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>N_{41}</td>
<td></td>
</tr>
</tbody>
</table>

M4

Gain = M0 – M12 vs M0 – M34

M12

M34

Heiko Paulheim
Alt ernative Split ting Criteria: GainRATIO

• Gain Ratio:

\[\text{GainRATIO}_{\text{split}} = \frac{\text{Gain}_{\text{split}}}{\text{SplitINFO}} \]

\[\text{SplitINFO} = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n} \]

• Parent Node, p is split into k partitions
• \(n_i \) is the number of records in partition i
 – Adjusts Information Gain by the entropy of the partitioning (SplitINFO)
 • Higher entropy partitioning (large number of small partitions) is penalized!
 – Designed to overcome the tendency to generate a large number of small partitions
Alternative Splitting Criteria: Classification Error

- Classification error at a node t:

 \[
 Error(t) = 1 - \max_i P(i \mid t)
 \]

- Measures misclassification error made by a node.
 - Assumption: The node classifies every example to belong to the majority class
 - Maximum $(1 - 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information
Decision Trees in RapidMiner (ID3)

Learns an un-pruned decision tree from nominal attributes only.

Heiko Paulheim
Decision Trees in RapidMiner

More flexible algorithm that includes pruning and discretization
Model Evaluation

• Metrics
 • how to measure performance?

• Evaluation methods
 • how to obtain meaningful estimates?
Model Evaluation

• Models are evaluated by looking at
 • correctly and incorrectly classified instances

• For a two-class problems, four cases can occur:
 • true positives: positive class correctly predicted
 • false positives: positive class incorrectly predicted
 • true negatives: negative class correctly predicted
 • false negatives: negative class incorrectly predicted
Metrics for Performance Evaluation

- Focus on the predictive capability of a model
- Rather than how fast it takes to classify or build models

Confusion Matrix:

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class=Yes</td>
</tr>
<tr>
<td>Class=Yes</td>
<td>TP</td>
</tr>
<tr>
<td>Class=No</td>
<td>FP</td>
</tr>
</tbody>
</table>
Metrics for Performance Evaluation

• Most frequently used metrics:

\[
\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
\]

Error Rate = 1 – Accuracy
What is a Good Accuracy?

• i.e., when are you done?
 – at 75% accuracy?
 – at 90% accuracy?
 – at 95% accuracy?

• Depends on difficulty of the problem!

• Baseline: naive guessing
 – always predict majority class

• Compare
 – Predicting coin tosses with accuracy of 50%
 – Predicting dice roll with accuracy of 50%
Limitation of Accuracy: Unbalanced Data

- Sometimes, classes have very unequal frequency
 - Fraud detection: 98% transactions OK, 2% fraud
 - eCommerce: 99% don’t buy, 1% buy
 - Intruder detection: 99.99% of the users are no intruders
 - Security: >99.99% of Americans are not terrorists

- The class of interest is commonly called the positive class, and the rest negative classes.

- Consider a 2-class problem
 - Number of Class 0 examples = 9990, Number of Class 1 examples = 10
 - If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example
Precision and Recall

Alternative: Use measures from information retrieval which are biased towards the positive class.

<table>
<thead>
<tr>
<th></th>
<th>Classified Positive</th>
<th>Classified Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Positive</td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td>Actual Negative</td>
<td>FP</td>
<td>TN</td>
</tr>
</tbody>
</table>

Precision p is the number of correctly classified positive examples divided by the total number of examples that are classified as positive.

Recall r is the number of correctly classified positive examples divided by the total number of actual positive examples in the test set.

$$p = \frac{TP}{TP + FP}.$$

$$r = \frac{TP}{TP + FN}.$$
Precision and Recall Example

This confusion matrix gives us
- **precision** $p = 100\%$ and
- **recall** $r = 1\%$

because we only classified one positive example correctly and no negative examples wrongly.

We want a measure that combines precision and recall.
F₁-Measure

• It is hard to compare two classifiers using two measures

• F₁-Score combines precision and recall into one measure

\[
F_1 = \frac{2pr}{p + r}
\]

F₁-score is the harmonic mean of precision and recall.

\[
F_1 = \frac{2}{\frac{1}{p} + \frac{1}{r}}
\]

• The harmonic mean of two numbers tends to be closer to the smaller of the two.

• For F₁-value to be large, both p and r must be large
F₁-Measure
Alternative for Unbalanced Data: Cost Matrix

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C(i</td>
</tr>
<tr>
<td>Class=Yes</td>
<td>C(Yes</td>
</tr>
<tr>
<td>Class=No</td>
<td>C(Yes</td>
</tr>
</tbody>
</table>

C(i|j): Cost of misclassifying class j example as class i
Computing Cost of Classification

<table>
<thead>
<tr>
<th>Cost Matrix</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL CLASS</td>
<td>C(i</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model M₁</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL CLASS</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>150</td>
</tr>
<tr>
<td>-</td>
<td>60</td>
</tr>
</tbody>
</table>

Accuracy = 80%
Cost = 4060

<table>
<thead>
<tr>
<th>Model M₂</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL CLASS</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>250</td>
</tr>
<tr>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>

Accuracy = 90%
Cost = 4505
ROC Curves

• Some classification algorithms provide confidence scores
 – how sure the algorithms is with its prediction
 – e.g., Naive Bayes: the probability
 – e.g., Decision Trees: the purity of the respective leaf node

• Drawing a ROC Curve
 – Sort classifications according to confidence scores
 – Evaluate
 • right prediction: draw one step up
 • wrong prediction: draw one step to the right
ROC Curves

- Drawing ROC Curves in RapidMiner
Example ROC Curve of Naive Bayes
Example ROC Curve of Decision Tree Learner
Interpreting ROC Curves

• Best possible result:
 – all correct predictions have higher confidence than all incorrect ones

• The steeper, the better
 – random guessing results in the diagonal
 – so a decent algorithm should result in a curve significantly above the diagonal

• Comparing algorithms:
 – Curve A above curve B means algorithm A better than algorithm B

• Frequently used criterion
 – Area under curve
 – normalized to 1
Methods for Performance Evaluation

• How to obtain a reliable estimate of performance?

• Performance of a model may depend on other factors besides the learning algorithm:
 - Size of training and test sets (it often expensive to get labeled data)
 - Class distribution (balanced, screwed)
 - Cost of misclassification (your goal)

• Methods for estimating the performance
 - Holdout
 - Random Subsampling
 - Cross Validation
Learning Curve

• Learning curve shows how accuracy changes with varying sample size

• Conclusion: Use as much data as possible for training
Holdout Method

- The *holdout method* reserves a certain amount for testing and uses the remainder for training.
- Usually: one third for testing, the rest for training.
- Applied when *lots of sample data* is available.
- For "unbalanced" datasets, samples might not be representative.
 - Few or none instances of some classes.
- *Stratified sample*: balances the data.
 - Make sure that each class is represented with approximately equal proportions in both subsets.
Leave One Out

• Iterate over all examples
 – train a model on all examples but the current one
 – evaluate on the current one

• Yields a very accurate estimate
• Uses as much data for training as possible
 – but is computationally infeasible in most cases

• Imagine: a dataset with a million instances
 – one minute to train a single model
 – One against all would take almost two years
Cross-Validation

• Compromise of Leave One Out and decent runtime

• Cross-validation avoids overlapping test sets
 ▪ First step: data is split into k subsets of equal size
 ▪ Second step: each subset in turn is used for testing and the remainder for training

• This is called k-fold cross-validation

• The error estimates are averaged to yield an overall error estimate

• Frequently used value for k : 10
 – Why ten? Extensive experiments have shown that this is the good choice to get an accurate estimate

• Often the subsets are stratified before the cross-validation is performed
Cross-Validation in RapidMiner

Heiko Paulheim
Practical Issue: Overfitting

- Example: predict credit rating
 - possible decision tree:

<table>
<thead>
<tr>
<th>Name</th>
<th>Net Income</th>
<th>Job status</th>
<th>Debts</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>40000</td>
<td>employed</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Mary</td>
<td>38000</td>
<td>employed</td>
<td>10000</td>
<td>-</td>
</tr>
<tr>
<td>Stephen</td>
<td>21000</td>
<td>self-employed</td>
<td>20000</td>
<td>-</td>
</tr>
<tr>
<td>Eric</td>
<td>2000</td>
<td>student</td>
<td>10000</td>
<td>-</td>
</tr>
<tr>
<td>Alice</td>
<td>35000</td>
<td>employed</td>
<td>40000</td>
<td>+</td>
</tr>
</tbody>
</table>
Practical Issue: Overfitting

- Example: predict credit rating
 - alternative decision tree:

<table>
<thead>
<tr>
<th>Name</th>
<th>Net Income</th>
<th>Job status</th>
<th>Debts</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>40000</td>
<td>employed</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Mary</td>
<td>38000</td>
<td>employed</td>
<td>10000</td>
<td>-</td>
</tr>
<tr>
<td>Stephen</td>
<td>21000</td>
<td>self-employed</td>
<td>20000</td>
<td>-</td>
</tr>
<tr>
<td>Eric</td>
<td>2000</td>
<td>student</td>
<td>10000</td>
<td>-</td>
</tr>
<tr>
<td>Alice</td>
<td>35000</td>
<td>employed</td>
<td>4000</td>
<td>+</td>
</tr>
</tbody>
</table>
Practical Issue: Overfitting

• Both trees seem equally good
 – Classify all instances in the training set correctly
 – Which one do you prefer?
Occam's Razor

- Named after William of Ockham (1287-1347)
- A fundamental principle of science
 - if you have two theories
 - that explain a phenomenon equally well
 - choose the simpler one

Example:
- phenomenon: the street is wet
- theory 1: it has rained
- theory 2: a beer truck has had an accident, and beer has spilled. The truck has been towed, and magpies picked the glass pieces, so only the beer remains
Practical Issue: Overfitting

- Overfitting: Good accuracy on training data, but poor on test data.
- Symptoms: Tree too deep and too many branches
- Typical causes of overfitting
 - too little training data
 - noise
 - poor learning algorithm
Overfitting - Illustration

- Polynomial degree 1 (linear function)
- Polynomial degree 4 (n-1 degrees can always fit n points)

Prediction for this value of x?

or here?

der or here?
Overfitting and Noise

(A) A partition of the data space

(B) The decision tree

Likely to overfit the data
How to Address Overfitting?

- **Pre-Pruning (Early Stopping Rule)**
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - Less restrictive conditions:
 - Stop if number of instances within a node is less than some user-specified threshold
 - Stop if expanding the current node only slightly improves the impurity measure (user-specified threshold)
How to Address Overfitting?

• Post-pruning
 1. Grow decision tree to its entire size
 2. Trim the nodes of the decision tree in a bottom-up fashion
 • using a validation data set
 • or an estimate of the generalization error
 3. If generalization error improves after trimming
 • replace sub-tree by a leaf node
 • Class label of leaf node is determined from majority class of instances in the sub-tree
Training vs. Generalization Errors

• Training error
 – also: resubstitution error, apparent error
 – errors made in training
 – evidence: misclassified training instances

• Generalization error
 – errors made on unseen data
 – evidence: no apparent evidence

• Training error can be computed
• Generalization error must be estimated
Estimating the Generalization Error

- **Training errors**: error on training ($\Sigma e(t)$)
- **Generalization errors**: error on testing ($\Sigma e'(t)$)

- **Methods for estimating generalization errors**:
 1. *Too* Optimistic approach: $e'(t) = e(t)$
 2. **Pessimistic approach**:
 - For each leaf node: $e'(t) = (e(t)+0.5)$ (user-defined 0.5 penalty for large trees)
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):
 - Training error = $10/1000 = 1\%$
 - Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$

Reduced Error Pruning (REP):
- use validation data set to estimate generalization error
Example of Post-Pruning

- Training Error (Before splitting) = 10/30
- Pessimistic error = (10 + 0.5)/30 = 10.5/30
- Training Error (After splitting) = 9/30
- Pessimistic error (After splitting) = (9 + 4 \times 0.5)/30 = 11/30

PRUNE!
Discussion of Decision Trees

• Advantages:
 – Inexpensive to construct
 – Fast at classifying unknown records
 – Easy to interpret by humans for small-sized trees
 – Accuracy is comparable to other classification techniques for many simple data sets

• Disadvantages:
 – Decisions are based only on a single attribute at a time
 – Can only represent decision boundaries that are parallel to the axes
 – Often not appropriate for continuous attributes
Comparing Decision Trees and k-NN

• Decision boundaries
 – k-NN: arbitrary
 – Decision trees: rectangular

• Sensitivity to scales
 – k-NN: needs normalization
 – Decision tree: does not require normalization (why?)

• Runtime & memory
 – k-NN is cheap to train, but expensive for classification
 – decision tree is expensive to train, but cheap for classification
Questions?