Why Parameter Tuning?

• What we have seen so far
 – many learning algorithms for classification, regression, ...

• Many of those have parameters
 – k and distance function for k nearest neighbors
 – splitting and pruning options in decision tree learning
 – hidden layers in neural networks
 – C, gamma, and kernel function for SVMs
 – ...

• But what is their effect?
 – hard to tell in general
 – rules of thumb are rare
Parameter Tuning – a Naive Approach

• You probably know that approach from the exercises

 1. run classification/regression algorithm
 2. look at the results (e.g., accuracy, RMSE, …)
 3. choose different parameter settings, go to 1

• Questions:
 • when to stop?
 • how to select the next parameter setting to test?
Parameter Tuning – Avoid Overfitting!

• Recap overfitting:
 – classifiers may overadapt to training data
 – the same holds for parameter settings

• Possible danger:
 – find parameters that work well on the training set
 – but not on the test set

• Remedy:
 – use cross-validation for testing parameter settings
Parameter Tuning – Avoid Overfitting!

- Parameter option: pruning (yes/no)
Parameter Tuning – Avoid Overfitting!

- Real example: train a local polynomial regression model
 - Parameter to tune: find the optimal maximum degree of the polynomial

- Tuning with cross validation: degree = 3
Parameter Tuning – Avoid Overfitting!

- Real example: train a local polynomial regression model
 - Parameter to tune: find the optimal maximum degree of the polynomial

- Tuning without cross validation: degree = 9
Parameter Tuning: Brute Force

• Try all parameter combinations that exist

• Consider, e.g., the k-NN classifier in RapidMiner
 – try 30 different distance measures
 – try all k from 1 to 100
 – use weighting or not
 → 6,000 runs of k-NN

• Plus: we use 10-fold CV for evaluating the parameter settings
 → that makes a total of 60,000 runs of k-NN

→ we need a better strategy than brute force!
Intermezzo: Beyond Parameter Tuning

- Parameter tuning is an optimization problem
- Finding optimal values for N variables
- Properties of the problem:
 - the underlying model is unknown
 - i.e., we do not know changing a variable will influence the results
 - we can tell how good a solution is when we see it
 - i.e., by running a classifier with the given parameter set
 - but looking at each solution is costly
 - e.g., 60,000 runs of k-NN

- Such problems occur quite frequently
Intermezzo: Beyond Parameter Tuning

• Related problem:
 – feature subset selection
 – cf. Data Mining 2, first lecture

• Given n features, brute force requires 2^n evaluations
 – for 20 features, that is already one million
 → ten million with cross validation
Intermezzo: Beyond Parameter Tuning

• Knapsack problem
 – given a maximum weight you can carry
 – and a set of items with different weight and monetary value
 – pack those items that maximize the monetary value

• Problem is NP hard
 – i.e., deterministic algorithms require an exponential amount of time
 – Note: feature subset selection for N features requires 2^n evaluations
Intermezzo: Beyond Parameter Tuning

• Many optimization problems are NP hard
 – Routing problems (Traveling Salesman Problem)
 – Integer factorization
 hard enough to be used for cryptography
 – Resource use optimization
 • e.g., minimizing cutoff waste
 – Chip design
 • minimizing chip sizes
Intermezzo: Beyond Parameter Tuning

My Hobby:
Embedding NP-complete problems in restaurant orders

Chotchkie's Restaurant

<table>
<thead>
<tr>
<th>Appetizers</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Fruit</td>
<td>2.15</td>
</tr>
<tr>
<td>French Fries</td>
<td>2.75</td>
</tr>
<tr>
<td>Side Salad</td>
<td>3.35</td>
</tr>
<tr>
<td>Hot Wings</td>
<td>3.55</td>
</tr>
<tr>
<td>Mozzarella Sticks</td>
<td>4.20</td>
</tr>
<tr>
<td>Sampler Plate</td>
<td>5.80</td>
</tr>
</tbody>
</table>

Sandwiches

<table>
<thead>
<tr>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbecue</td>
</tr>
</tbody>
</table>

We'd like exactly $15.05 worth of appetizers, please.

... exactly? Uhh...

Here, these papers on the knapsack problem might help you out.

Listen, I have six other tables to get to—

As fast as possible, of course. Want something on traveling salesman?

http://xkcd.com/287/
Parameter Tuning: Brute Force

• Properties of Brute Force search
 – guaranteed to find the best parameter setting
 – too slow in most practical cases

• Grid Search in RapidMiner:
 – performs a brute force search
 – with equal-width steps on non-discrete numerical attributes
 (e.g., 10, 20, 30, .., 100)

• Parameters with a wide range (e.g., 0.0001 to 1,000,000)
 – logarithmic steps may perform better
 – with ten equal-width steps, the first step would be 1,000
 – but what if the optimum is around 0.1?
Parameter Tuning: Heuristics

- Properties of Brute Force search
 - guaranteed to find the best parameter setting
 - too slow in most practical cases

- Needed:
 - solutions that take less time/computation
 - and often find the best parameter setting
 - or find a near-optimal parameter setting
Beyond Brute Force

BRUTE-FORCE SOLUTION: $O(n!)$

DYNAMIC PROGRAMMING ALGORITHMS: $O(n^2 2^n)$

SELLING ON EBAY: $O(1)$

STILL WORKING ON YOUR ROUTE?

SHUT THE HELL UP.

https://xkcd.com/399/
Parameter Tuning: One After Another

• Given n parameters with m degrees of freedom
 – brute force takes m^n runs of the base classifier

• Simple tweak:
 1. start with default settings
 2. try all options for the first parameter
 3. try all options for the second parameter
 4. ...

• This reduces the runtime to n*m
 – but we may miss the best solution
Parameter Tuning: Interaction Effects

• Interaction effects make parameter tuning hard
 – i.e., changing one parameter may change the optimal settings for another one

• Example: two parameters p and q, each with values 0, 1, and 2
 – the table depicts the accuracy

<table>
<thead>
<tr>
<th></th>
<th>p=0</th>
<th>p=1</th>
<th>p=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q=0</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>q=1</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>q=2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Parameter Tuning: Interaction Effects

• If we try to optimize one parameter by another (first p, then q)
 – we end at $p=0, q=0$ in six out of nine cases
 – on average, we investigate 2.3 solutions

<table>
<thead>
<tr>
<th></th>
<th>$p=0$</th>
<th>$p=1$</th>
<th>$p=2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q=0$</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>$q=1$</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>$q=2$</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Hill-Climbing Search

• a.k.a. greedy local search
• always search in the direction of the steepest ascend
 – "Like climbing Everest in thick fog with amnesia"

```
function HILL-CLIMBING(problem) returns a state that is a local maximum
    inputs: problem, a problem
    local variables: current, a node
                    neighbor, a node

    current ← MAKE-NODE(INITIAL-STATE[problem])
    loop do
        neighbor ← a highest-valued successor of current
        if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
        current ← neighbor

```
Hill-Climbing Search

- Problem: depending on initial state, can get stuck in local maxima
Hill Climbing Search

• Given our previous problem
 – we end up at the optimum in three out of nine cases
 – but the local optimum \((p=0,q=0)\) is reached in six out of nine cases!
 – on average, we investigate 2.1 solutions

<table>
<thead>
<tr>
<th></th>
<th>p=0</th>
<th>p=1</th>
<th>p=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>q=0</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>q=1</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>q=2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Variations of Hill Climbing Search

- **Stochastic hill climbing**
 - random selection among the uphill moves
 - the selection probability can vary with the steepness of the uphill move

- **First-choice hill climbing**
 - generating successors randomly until a better one is found, then pick that one

- **Random-restart hill climbing**
 - run hill climbing with different seeds
 - tries to avoid getting stuck in local maxima
Local Beam Search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k states are generated

• Select the k best successors from the complete list and repeat
Simulated Annealing

• Escape local maxima by allowing “bad” moves
 – Idea: but gradually decrease their size and frequency
• Origin: metallurgical annealing

• Bouncing ball analogy:
 – Shaking hard (= high temperature)
 – Shaking less (= lower the temperature)
• If T decreases slowly enough, best state is reached
function SIMULATED-ANNEALING(problem, schedule) return a solution state
input: problem, a problem
 schedule, a mapping from time to temperature
local variables: current, a node.
 next, a node.
 T, a “temperature” controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
 T ← schedule[t]
 if T = 0 then return current
 next ← a randomly selected successor of current
 ΔE ← VALUE[next] - VALUE[current]
 if ΔE > 0 then current ← next
 else current ← next only with probability \(e^{\Delta E / T} \)
Genetic Algorithms

- Inspired by *evolution*
- Overall idea:
 - use a population of individuals (solutions)
 - create new individuals by crossover
 - introduce random mutations
 - from each generation, keep only the best solutions ("survival of the fittest")
- Developed in the 1970s
- John H. Holland:
 - Standard Genetic Algorithm (SGA)

Charles Darwin (1809-1882)
Genetic Algorithms

• Basic ingredients:
 – individuals: the solutions
 • parameter tuning: a parameter setting
 – a fitness function
 • parameter tuning: performance of a parameter setting
 (i.e., run learner with those parameters)
 – a crossover method
 • parameter tuning: create a new setting from two others
 – a mutation method
 • parameter tuning: change one parameter
 – survivor selection
SGA Reproduction Cycle

1. Select parents for the mating pool
 (size of mating pool = population size)
2. Shuffle the mating pool
3. For each consecutive pair apply crossover with probability p_c, otherwise copy parents
4. For each offspring apply mutation
 (bit-flip with probability p_m independently for each bit)
5. Replace the whole population with the resulting offspring
SGA Operators: 1-point crossover

- Choose a random point on the two parents
- Split parents at this crossover point
- Create children by exchanging tails
- P_c typically in range $(0.6, 0.9)$
SGA Operators: Mutation

- Alter each gene independently with a probability p_m
- p_m is called the mutation rate
 - Typically between $1/pop_size$ and $1/chromosome_length$
SGA Operators: Selection

- Main idea: better individuals get higher chance
 - Chances proportional to fitness
 - Implementation: roulette wheel technique
 » Assign to each individual a part of the roulette wheel
 » Spin the wheel \(n \) times to select \(n \) individuals

<table>
<thead>
<tr>
<th>Individual</th>
<th>Fitness</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>33%</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>17%</td>
</tr>
</tbody>
</table>

fitness(A) = 3
fitness(B) = 1
fitness(C) = 2
Crossover OR Mutation?

• Decade long debate: which one is better / necessary ...

• Answer (at least, rather wide agreement):
 – it depends on the problem, but
 – in general, it is good to have both
 – both have another role
 – mutation-only-EA is possible, crossover-only-EA would not work
Crossover OR Mutation? (cont’d)

- Exploration: Discovering promising areas in the search space, i.e. gaining information on the problem
- Exploitation: Optimising within a promising area, i.e. using information
- There is co-operation AND competition between them
- Crossover is explorative, it makes a *big* jump to an area somewhere “in between” two (parent) areas
- Mutation is exploitative, it creates random *small* diversions, thereby staying near (in the area of) the parent
Crossover OR Mutation? (cont'd)

• Recall the solution space example from Hill Climbing
 – crossover makes big jumps
 – mutation makes small steps
Crossover OR Mutation? (cont’d)

- Only crossover can combine information from two parents
- Only mutation can introduce new information (alleles)
- Crossover does not change the allele frequencies of the population (thought experiment: 50% 0’s on first bit in the population, ??% after performing n crossovers)
- To hit the optimum you often need a ‘lucky’ mutation
The Simple GA

- Has been subject of many (early) studies
 - still often used as benchmark for novel GAs
- Shows many shortcomings, e.g.
 - Representation is too restrictive
 - Mutation & crossovers only applicable for bit-string representation
 - Selection mechanism sensitive for converging populations with close fitness values
 - Generational population model (step 5 in the reproduction cycle) can be improved with explicit survivor selection
Representation Problems

- Integers are represented by a binary substring
 - e.g., the number 1024 as 10000000000

- Mutation of single bits has effects on different scales
 - e.g., 10000000000 → 10000000001 (1024 → 1025)
 - e.g., 10000000000 → 00000000000 (1024 → 0)

- Early solution:
 - gray coding

- Recent solutions:
 - use numbers in representation
 - e.g., x-over by average, mutation by small delta change

<table>
<thead>
<tr>
<th>N</th>
<th>Binary</th>
<th>Gray</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>0011</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>0010</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0110</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>0111</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>0101</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>0100</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1100</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Arithmetic Crossover

• Most commonly used
• Parents: \(x_1, \ldots, x_n\) and \(y_1, \ldots, y_n\)
• child\(_1\) is:

\[a \cdot \bar{x} + (1 - a) \cdot \bar{y} \]

• reverse for other child. e.g. with \(\alpha = 0.5\)
Further Variants in Genetic Algorithms

- Two-parent vs. multi-parent cross-over
- Rank based selection
 - instead of wheel-of-fortune implementation
 - avoids strong dominance of fitter individuals
- Tournament based selection
 - pairwise comparison of individuals
 - score of individual: number of wins
- Age-based survivor selection
 - i.e., more likely to delete older survivors
- ...
Parameter Tuning Operators in RapidMiner
Genetic Feature Subset Selection

• Feature Subset Selection
 – can also be solved by Genetic Programming

• Individuals: feature subsets
• Representation: binary
 – 1 = feature is included
 – 0 = feature is not included
• Fitness: classification performance
• Crossover: combine selections of two subsets
• Mutation: flip bits
Selecting a Learner

- So far, we have looked at finding good parameters for a learner
 - the learner was always fixed

- A similar problem is selecting a learner for the task at hand
- Again, we could go with search
- Another approach is meta learning
Selecting a Learner by Meta Learning

- Meta Learning
 - i.e., learning about learning

- Goal: learn how well a learner will perform on a given dataset
 - features: dataset characteristics, learning algorithm
 - prediction target: accuracy, RMSE, ...
Selecting a Learner by Meta Learning

- Used in the *Automatic System Construction* extension
- regression trained on
 - 90 datasets
 - 54 features

- Examples for features
 - number of instances/attributes
 - fraction of nominal/numerical attributes
 - min/max/average entropy of attributes
 - skewness of classes
 - ...
Selecting a Learner by Meta Learning

• Used in the *Automatic System Construction* extension
…and now for something completely different.

- Recap: search heuristics are good for problems where...
 - finding an optimal solution is difficult
 - evaluating a solution candidate is easy
 - the search space of possible solutions is large
- Possible solution: genetic programming

- We have encountered such problems quite frequently
- Example: learning an optimal decision tree from data
Genetic Decision Tree Learning

- e.g., GAIT (Fu et al., 2003)
 - also the source of the pictures on the following slides
- Population: candidate decision trees
 - initialization: e.g., trained on small subsets of data
- Create new decision trees by means of
 - crossover
 - mutation
- Fitness function: e.g., accuracy
Genetic Decision Tree Learning

• Crossover:
Genetic Decision Tree Learning

- Mutation:

```
          o
         / \  
        0   1
       /   /  
      2   3  4
     /   /   /  
    5   6   7  8
   /   /   /   /  
  9   10  11  12  13
```

Subtree-to-subtree Mutation

Subtree-to-leaf Mutation
Genetic Decision Tree Learning

- Feasibility Check:
Combination of GP with other Learning Methods

• Rule Learning ("Learning Classifier Systems"), since late 70s
 – Population: set of rule sets (!)
 – Crossover: combining rules from two sets
 – Mutation: changing a rule

• Artificial Neural Networks
 – Easiest solution: fixed network layout
 – The network is then represented as an ordered set (vector) of weights e.g., [0.8, 0.2, 0.5, 0.1, 0.1, 0.2]
 – Crossover and mutation are straight forward
 – Variant: AutoMLP
 • Searches for best combination of hidden layers and learning rate
Wrap-Up

- Parameter tuning is important
 - many learning methods work poorly with standard parameters
 - often no global optimum, dataset dependent

- Parameter tuning has a large search space
 - trying all combinations is infeasible
 - interaction effects do not allow for one-by-one tuning
Wrap-Up

• Heuristic Methods
 – Hill climbing with variations
 – Beam search
 – Simulated Annealing
 – Genetic Programming

• Other uses of genetic programming
 – Feature subset selection
 – Model fitting
Questions?