Data Mining II
Data Mining Cup – Let's Go!

Heiko Paulheim, Robert Meusel
Requirements

• Final exam
 – 50 % written exam
 – 50 % project work

• Project work
 – work on DMC tasks
 – we meet every week to discuss the current progress

• Presentations
 – four intermediate presentations
 • open questions, problems, current results (numbers in 10-fold CV)
 – one final presentation
 – everybody has to present once during those five presentations

• Final report
 – 10 pages per team
 – solutions, results, lessons learned
DMC Timeline

• Today: First look at the task, organization
 – Build two teams
 – Understand the task

• April 20th: Intermediate presentation & discussion
• April 27th: Intermediate presentation & discussion
• May 4th: Intermediate presentation & discussion
• May 11th: Intermediate presentation & discussion
• May 13th (Wednesday): Internal submission of DMC solutions to Robert and Heiko
• May 19th (Tuesday): DMC Deadline
• May 25th (Monday): Submission of final report
• May 26th (Tuesday): Final presentation
Project Grading

• Projects will be graded based on
 – Innovation of ideas created and pursued
 – Intermediate and final presentations
 – Quality of the final report

• We will have two teams, but joint meetings
 – You are allowed to use ideas from the other team
 • but you have to mark them in the final report
 – And you send us your slides of each intermediate presentation
 • so that we can track the origin of ideas
Individual Grading

• In each team, there will be smaller sub teams working on different tasks
 – In each presentation, you have at least one slide per sub team / task
 – With names!

• Peer grading
 – At the end of the project, you will give grades to your team mates
 – Your grades will be kept secretly
 – We only use them to confirm (and, if necessary, adjust) our assessment
Let's Get Started with the Task

• You have looked at the data
• ...and read the task

• Question 1: what does the data look like?
 – we need a detailed profile until next week
• Question 2: what will the overall approach look like?
 – Four individual models?
 – A chain of models?
 – Use three individual models for all three coupons, or one for all?
• Question 3: which features do we use?
 – we start off with a brainstorming today
 – then, prepare some preliminary study until next week
Question 1: What does the Data Look Like?

- Detailed questions include, but are not limited to
 - Are there unseen products in the test set?
 - Are there unseen users in the test set?
 - How is the distribution of products/users/brands, e.g., are there top sellers/users/brands?
 - How many distinct products, brands, categories are there?
 - How are categories distributed?
- Plus: what is the performance of a default model?
Question 2: Which Overall Approach?

- We need to predict four variables
 - coupon1, coupon2, coupon3 redeemed or not (binary)
 - overall basket value

- Possible variants (non-exhaustive)
 - Four individual prediction problems
 - Predict coupon redemption first, use results in basket value prediction
 - Predict basket value first, use result in coupon redemption prediction
Question 2: Which Overall Approach?

- We need to predict four variables
 - coupon1, coupon2, coupon3 redeemed or not (binary)
 - overall basket value

- Three vs. one model for coupon1..3
 - first look: do they differ somehow?
 - e.g., different product categories?

- Variants for coupon redemption (0/1 variable)
 - ordinary classification
 - classification with confidence, use confidence
 - regression, with ex post restriction to [0;1] interval
Question 3: What Features can we Use?

• Let's make some brainstorming:
 – dealing with categories (comma separated list!)
 – features for the user
 – features for the product
 – features for the coupon
 – features for the brand
 – features for the order
Now You Know what to Do!

It's... Time!

To Go to Work!

04/16/15 Heiko Paulheim, Robert Meusel