Database Technology
Indexing and Hashing

Heiko Paulheim
Previously on Database Technology

• We can find information in databases
 – e.g., employees by name:
 SELECT * FROM employee WHERE name = ‘Brandt’
 – e.g., employees within a range of salary
 SELECT * FROM employee WHERE salary > 50000
Finding Information in Databases

• How does that work, actually?
 – SELECT * FROM employee WHERE name = ‘Brandt’

• Naive approach (called *linear search*):
 – Go through the table from top to bottom
 – Find and return all employees with name ‘Brandt’

• Complexity:
 – If there are N records in the table, this takes (up to) N steps
 – We call this complexity: $O(N)$
 – Note that even if we find a “Brandt” earlier, we need to search further, since there might be more people named “Brandt”
 • and the query is expected to return them all
Finding Information in Databases

• How does that work, actually?
 – SELECT * FROM employee WHERE name = 'Brandt'

• Better approach
 – Let’s assume we have sorted the table by name

• We can now apply *binary search*
 – Get element in the middle of the table
 – If the searched element is “smaller”
 • Search the upper half table
 – Else
 • Search the lower half table
Finding Information in Databases

• Binary search
 – Works in $O(\log_2 N)$

• However
 – Sorting the table requires $O(N \times \log_2 N)$
 – This pays off only if we sort once and query often
 – Inserts are more expensive now

• What if our next query is
 SELECT * FROM employee WHERE salary > 50000

• Now, the table is sorted by name, not salary
 – If we re-sort before every query, it gets even worse than by linear search
Finding Information in Databases

• Naive solution
 – Provide copies of each table sorted by each attribute we may need

• Hey, wait…
 – We’ve always tried to *reduce* redundancy
 – Not to *increase* it…

• More sophisticated solution:
 – Index structures
Index Files

• Index files
 – Provide a compromise between re-sorting
 – and copying the table

• Idea
 – Provide a sorted file of a single attribute only
 • Allows linear search
 – Index file contains pointers to actual file
 • Which may or may not be sorted
Index Files

• Basic idea
 – Search in index is $O(\log_2 N)$
 – Following link is $O(1)$
 – Each index can remain sorted
 – Create an index for each attribute which you may use in a query

• Trade-off
 – Faster queries
 – Some redundancy
 • But this is handled by the DBMS!
 • i.e., mainly a storage capacity problem, not so much a consistency problem
Index Files and Joins

- Understanding the need for an index file
 - Analyzing possible queries
- First use case: search attributes
 - quite straightforward
- Second use case: joins
- Suppose we want to query for the building of an instructor by name
 - name on instructor is straightforward for an index candidate
 - Query processing:
 - find instructor by name
 - read dept_name
 - look up dept_name in department

hence, we need an index on dept_name in department!
Index Files – Basic Concepts

• Indexing mechanisms used to speed up access to desired data
 – e.g., searching by a specific attribute
 – but also: joins!

• Search Key - attribute to set of attributes used to look up records in a file
 – An index file consists of records (called index entries) of the form

 | search-key | pointer |

• Two basic kinds of indices:
 – Ordered indices: search keys are stored in sorted order
 – Hash indices: search keys are distributed uniformly across “buckets” using a “hash function”
Metrics for Evaluating Index Structures

- Access types supported efficiently
 - records with a specified value in the attribute
 - or records with an attribute value falling in a specified range of values
- Access time
- Insertion time
 - Note: index needs to be updated as well
- Deletion time
 - Note: may require deletion from index
- Storage space overhead
Ordered Indices

- In an ordered index, index entries are stored sorted on the search key value
 - allows $O(\log_2 N)$ search

- Primary index: in a sequentially ordered file, the index whose search key specifies the sequential order of the file
 - Also called *clustering index*
 - Search key: usually (but not necessarily) the primary key

- Secondary index: an index whose search key specifies an order different from the sequential order of the file
 - Also called *non-clustering index*
Dense vs. Sparse Index Files

- **Dense index**: index record appears for every search-key value
 - e.g., index on *ID* attribute of *instructor* relation

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Department</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>65000</td>
</tr>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>90000</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td>22222</td>
<td>Einstein</td>
<td>Physics</td>
<td>95000</td>
</tr>
<tr>
<td>32343</td>
<td>El Said</td>
<td>History</td>
<td>60000</td>
</tr>
<tr>
<td>33456</td>
<td>Gold</td>
<td>Physics</td>
<td>87000</td>
</tr>
<tr>
<td>45565</td>
<td>Katz</td>
<td>Comp. Sci.</td>
<td>75000</td>
</tr>
<tr>
<td>58583</td>
<td>Califieri</td>
<td>History</td>
<td>62000</td>
</tr>
<tr>
<td>76543</td>
<td>Singh</td>
<td>Finance</td>
<td>80000</td>
</tr>
<tr>
<td>76766</td>
<td>Crick</td>
<td>Biology</td>
<td>72000</td>
</tr>
<tr>
<td>83821</td>
<td>Brandt</td>
<td>Comp. Sci.</td>
<td>92000</td>
</tr>
<tr>
<td>98345</td>
<td>Kim</td>
<td>Elec. Eng.</td>
<td>80000</td>
</tr>
</tbody>
</table>
Dense vs. Sparse Index Files

- Dense index: index record appears for every search-key value
 - e.g., index on *department* attribute of *instructor* relation

<table>
<thead>
<tr>
<th>Biology</th>
<th>76766</th>
<th>Crick</th>
<th>Biology</th>
<th>72000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp. Sci.</td>
<td>10101</td>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>65000</td>
</tr>
<tr>
<td>Elec. Eng.</td>
<td>45565</td>
<td>Katz</td>
<td>Comp. Sci.</td>
<td>75000</td>
</tr>
<tr>
<td>Finance</td>
<td>83821</td>
<td>Brandt</td>
<td>Comp. Sci.</td>
<td>92000</td>
</tr>
<tr>
<td>History</td>
<td>98345</td>
<td>Kim</td>
<td>Elec. Eng.</td>
<td>80000</td>
</tr>
<tr>
<td>Music</td>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>90000</td>
</tr>
<tr>
<td>Physics</td>
<td>76543</td>
<td>Singh</td>
<td>Finance</td>
<td>80000</td>
</tr>
<tr>
<td></td>
<td>32343</td>
<td>El Said</td>
<td>History</td>
<td>60000</td>
</tr>
<tr>
<td></td>
<td>58583</td>
<td>Califieri</td>
<td>History</td>
<td>62000</td>
</tr>
<tr>
<td></td>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td></td>
<td>22222</td>
<td>Einstein</td>
<td>Physics</td>
<td>95000</td>
</tr>
<tr>
<td></td>
<td>33465</td>
<td>Gold</td>
<td>Physics</td>
<td>87000</td>
</tr>
</tbody>
</table>
Dense vs. Sparse Index Files

- Sparse Index: contains index records for only some values
 - Applicable when records are sequentially ordered on search-key
- To locate a record with search-key value K we:
 - Find index record with largest search-key value $< K$
 - Search file sequentially starting at that record
Dense vs. Sparse Index Files

• Dense index
 – Guaranteed search time of $O(\log_2 N)$
 – Requires $O(N)$ storage space

• Sparse index (storing every k-th value)
 – Search time $O(\log_2 N + \log_2 k)$
 – Requires $O(N/k)$ storage time

• Comparison
 – Dense index is faster
 – Sparse index takes less space
Secondary Index

• Frequently, one wants to find all the records whose values in a certain field (which is not the search-key of the primary index) satisfy some condition
 – Example 1: In the instructor relation stored sequentially by ID, we may want to find all instructors in a particular department
 – Example 2: as above, but where we want to find all instructors with a specified salary or with salary in a specified range of values

• We can have a secondary index with an index record for each search-key value
Secondary Index

- Primary index: index on the attribute by which a file is ordered
- Secondary index: index on any other attribute
 - Index record points to a bucket that contains pointers to all the actual records with that particular search-key value
 - Secondary indices have to be dense
Multi-Level Indices

- Computer storage:
 - RAM: fast, but limited
 - Disk: slow, but large

- Fast access
 - Keep primary index in memory, actual data on disk

- What if the primary index does not fit in memory?
 - Treat primary index kept on disk as a sequential file
 - Construct a sparse index on it, keep that index in memory

- Outer vs. inner index
 - outer index – a sparse index of primary index
 - inner index – the primary index file
Insertion into Index

• Single-level index insertion
 – Perform a lookup using the search-key value appearing in the record to be inserted
 – Dense indices – if the search-key value does not appear in the index, insert it
 – Sparse indices – if index stores an entry for each block of the file, no change needs to be made to the index unless a new block is created
 • If a new block is created, the first search-key value appearing in the new block is inserted into the index

• Multilevel insertion: algorithms are simple extensions of the single-level algorithms

Costly!
Deletion from Index

• If deleted record was the only record in the file with its particular search-key value, the search-key is deleted from the index also

• Single-level index entry deletion:
 – Dense indices – deletion of search-key is similar to file record deletion
 – Sparse indices
 • if an entry for the search key exists in the index, it is deleted by replacing the entry in the index with the next search-key value in the file (in search-key order)
 • If the next search-key value already has an index entry, the entry is deleted instead of being replaced

• Multilevel deletion: algorithms are simple extensions of the single-level algorithms
Summary Sequential Indices

- Access time: $O(\log_2 N)$
- Insertion time: $O(N)$
 - worst case: insertion at the top, all other entries need to be moved down
- Deletion time: $O(N)$
 - worst case: deletion from the top, all other entries need to be moved up
B⁺-Tree Index Files

• Disadvantage of indexed-sequential files
 – performance degrades as file grows, since many overflow blocks get created
 – periodic reorganization of entire file is required

• Advantage of B⁺-tree index files:
 – automatically reorganizes itself with small, local, changes, in the face of insertions and deletions
 – reorganization of entire file is not required to maintain performance

• (Minor) disadvantage of B⁺-trees:
 – extra insertion and deletion overhead, space overhead

• Advantages of B⁺-trees outweigh disadvantages
• B⁺-trees are used extensively
B⁺-Trees

• A B⁺-tree is a rooted tree satisfying the following properties:
 – All paths from root to leaf are of the same length
 – Each node that is not a root or a leaf has between \(\lceil n/2 \rceil \) and n children
 – A leaf node has between \(\lceil (n-1)/2 \rceil \) and n–1 values

• Special cases:
 – If the root is not a leaf, it has at least 2 children.
 – If the root is a leaf (that is, there are no other nodes in the tree), it can have between 0 and (n–1) values.
B⁺-Trees: Example

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Major</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brandt</td>
<td>Comp. Sci.</td>
<td>92000</td>
</tr>
<tr>
<td>Calieri</td>
<td>Finance</td>
<td>80000</td>
</tr>
<tr>
<td>Crick</td>
<td>Biology</td>
<td>72000</td>
</tr>
<tr>
<td>Einstein</td>
<td>Physics</td>
<td>95000</td>
</tr>
<tr>
<td>El Said</td>
<td>History</td>
<td>80000</td>
</tr>
<tr>
<td>Gold</td>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td>Katz</td>
<td>Comp. Sci.</td>
<td>75000</td>
</tr>
<tr>
<td>Kim</td>
<td>History</td>
<td>60000</td>
</tr>
<tr>
<td>Mozart</td>
<td>Finance</td>
<td>90000</td>
</tr>
<tr>
<td>Srinivasan</td>
<td>Comp. Sci.</td>
<td>65000</td>
</tr>
<tr>
<td>Wu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Root node

Internal nodes

Leaf nodes
B⁺-Trees: Example

- Example: $n=4$
 - All paths from root to leaf are of the same length
 - Each node that is not a root or a leaf has between $\lceil n/2 \rceil = 2$ and $n=4$ children
 - A leaf node has between $\lceil (n-1)/2 \rceil = 2$ and $n-1=3$ values
 - Root has at least 2 children
B⁺-Tree Node Structure

• Typical node

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>K_1</td>
<td>P_2</td>
<td>\ldots</td>
<td>P_{n-1}</td>
<td>K_{n-1}</td>
<td>P_n</td>
</tr>
</tbody>
</table>

• K_i are the search-key values

• P_i are pointers to children (for non-leaf nodes) or pointers to records or buckets of records (for leaf nodes)

• The search-keys in a node are ordered

\[K_1 < K_2 < K_3 < \ldots < K_{n-1} \]

 – for the moment: assuming there are no duplicate keys, but extension to handling duplicate keys is easily possible
Leaf Nodes in B^+-Trees

- For $i = 1, 2, \ldots, n-1$, pointer P_i points to a file record with search-key value K_i.
- If L_i, L_j are leaf nodes and $i < j$, L_i’s search-key values are less than or equal to L_j’s search-key values.
- P_n points to next leaf node in search-key order.

<table>
<thead>
<tr>
<th>10101</th>
<th>Srinivasan</th>
<th>Comp. Sci.</th>
<th>65000</th>
</tr>
</thead>
<tbody>
<tr>
<td>12121</td>
<td>Wu</td>
<td>Finance</td>
<td>90000</td>
</tr>
<tr>
<td>15151</td>
<td>Mozart</td>
<td>Music</td>
<td>40000</td>
</tr>
<tr>
<td>22222</td>
<td>Einstein</td>
<td>Physics</td>
<td>95000</td>
</tr>
<tr>
<td>32343</td>
<td>El Said</td>
<td>History</td>
<td>80000</td>
</tr>
<tr>
<td>33456</td>
<td>Gold</td>
<td>Physics</td>
<td>87000</td>
</tr>
<tr>
<td>45565</td>
<td>Katz</td>
<td>Comp. Sci.</td>
<td>75000</td>
</tr>
<tr>
<td>58583</td>
<td>Califieri</td>
<td>History</td>
<td>60000</td>
</tr>
<tr>
<td>76543</td>
<td>Singh</td>
<td>Finance</td>
<td>80000</td>
</tr>
<tr>
<td>76766</td>
<td>Crick</td>
<td>Biology</td>
<td>72000</td>
</tr>
<tr>
<td>83821</td>
<td>Brandt</td>
<td>Comp. Sci.</td>
<td>92000</td>
</tr>
<tr>
<td>98345</td>
<td>Kim</td>
<td>Elec. Eng.</td>
<td>80000</td>
</tr>
</tbody>
</table>
• Properties of an inner node with \(m \) entries:

 – All the search-keys in the subtree to which \(P_1 \) points are less than \(K_1 \)

 – For \(2 \leq i \leq n - 1 \), all the search-keys in the subtree to which \(P_i \) points have values greater than or equal to \(K_{i-1} \) and less than \(K_i \)

 – All the search-keys in the subtree to which \(P_n \) points have values greater than or equal to \(K_{n-1} \)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>(K_1)</td>
<td>(P_2)</td>
<td>...</td>
<td>(P_{n-1})</td>
<td>(K_{n-1})</td>
<td>(P_n)</td>
</tr>
</tbody>
</table>
Observations about B^+-Trees

• Since the inter-node connections are done by pointers, “logically” close blocks need not be “physically” close

• The non-leaf levels of the B^+-tree form a hierarchy of sparse indices

• The B^+-tree contains a relatively small number of levels
 – Level below root has at least $2^* \lceil n/2 \rceil$ values
 – Next level has at least $2^* \lceil n/2 \rceil \times \lceil n/2 \rceil$ values
 • .. etc.
 – If there are K search-key values in the file, the tree height is no more than $\lceil \log_{\lceil n/2 \rceil}(K) \rceil$
 • thus searches can be conducted efficiently

• Insertions and deletions to the main file can be handled efficiently (as we shall see)
Querying B$^+$-Trees

- Given a search value V (e.g., “Einstein”)
 - In non-leaf nodes: follow non-null pointers P_i where $V<K_i$, so that i maximal
 - In leaf nodes: if there is a value $K_i=V$, follow P_i
- else: record does not exist
Querying B⁺-Trees

• If there are K search-key values in the file, the height of the tree is no more than $\left\lceil \log_{n/2}(K) \right\rceil$
 – i.e., this is the number of leaf nodes to inspect
 – supposing a disk-based index: the number of nodes to be retrieved
• A node is generally the same size as a disk block, typically 4 kilobytes
 – and n is typically around 100 (40 bytes per index entry)
• With 1 million search key values and $n = 100$
 – at most $\log_{50}(1,000,000) = 4$ nodes are accessed in a lookup
 – disk I/O is the crucial factor here
Updates on B⁺-Trees: Insertion

- Find the leaf node in which the search-key value would appear
- If the search-key value is already present in the leaf node
 - add record to the file
 - if necessary, add a pointer to the bucket
- If the search-key value is not present, then
 - add the record to the main file (and create a bucket if necessary)
 - If there is room in the leaf node
 - insert (key-value, pointer) pair in the leaf node
 - else
 - split the node (along with the new (key-value, pointer) entry)
Updates on B\(^+\)-Trees: Insertion

• Splitting a leaf node:
 – take the \(n \) (search-key value, pointer) pairs (including the one being inserted) in sorted order. Place the first \(\lceil n/2 \rceil \) in the original node, and the rest in a new node \(p \)
 – let \(k \) be the least key value in \(p \). Insert \((k,p)\) in the parent of the node being split.
 – If the parent is full, split it and **propagate** the split further up

• Splitting of nodes proceeds upwards till a node that is not full is found
 – In the worst case (i.e., root is full) the root node may be split increasing the height of the tree by 1

Result of splitting node containing Brandt, Califieri, Crick on inserting Adams

Next step: insert entry with (Califieri,pointer-to-new-node) into parent
Updates on B^+-Trees: Insertion

- Inserting “Adams”
Updates on B⁺-Trees: Insertion

- Inserting “Lamport”
Updates on B⁺-Trees: Deletion

• Find the record to be deleted, and remove it from the main file and from the bucket (if present)
• Remove (search-key value, pointer) from the leaf node if there is no bucket or if the bucket has become empty
• If the node has too few entries due to the removal, and the entries in the node and a sibling fit into a single node, then merge siblings
• Otherwise, if the node has too few entries due to the removal, but the entries in the node and a sibling do not fit into a single node, then redistribute pointers
Updates on B⁺-Trees: Deletion

- **Merge siblings**
 - Insert all the search-key values in the two nodes into a single node (the one on the left), and delete the other node
 - Delete the pair \((K_{i-1}, P_i)\), where \(P_i\) is the pointer to the deleted node, from its parent (potential recursion)

- **Redistribute pointers**
 - Redistribute the pointers between the node and a sibling such that both have more than the minimum number of entries
 - Update the corresponding search-key value in the parent of the node (potential recursion)

- The node deletions may cascade upwards till a node which has \(\lceil n/2 \rceil\) or more pointers is found
 - If the root node has only one pointer after deletion, it is deleted and the sole child becomes the root
Updates on B^+-Trees: Deletion

• Deleting “Srinivasan”
Indexing Strings

• Variable length strings as keys
 – Variable fanout
 – Use space utilization as criterion for splitting, not number of pointers
• Prefix compression
 – Key values at internal nodes can be prefixes of full key
 • Keep enough characters to distinguish entries in the subtrees separated by the key value
 – E.g. “Silas” and “Silberschatz” can be separated by “Silb”
 – Keys in leaf node can be compressed by sharing common prefixes
Bulk Loading into B^+-Trees

• Inserting entries one-at-a-time into a B^+-tree requires ≥ 1 IO per entry
 – assuming leaf level does not fit in memory
 – can be very inefficient for loading a large number of entries at a time (bulk loading)

• Efficient alternative 1:
 – sort entries first, insert in sorted order
 – heavy reorganizations are avoided
 – much improved IO performance, but most leaf nodes half full

• Efficient alternative 2: Bottom-up B^+-tree construction
 – As before sort entries
 – And then create tree layer-by-layer, starting with leaf level
 – Implemented as part of bulk-load utility by most database systems
Bulk Loading into B⁺-Trees

- Bottom-up bulk loading
 - Leads to a compact tree representation
 - Fast, since no reorganizations are required
- Start with ordered sequence
 - Create full leaves
 - Create upper levels
Indices on Multiple Attributes

• Use multiple indices for certain types of queries

• Example:

  ```sql
  select ID
  from instructor
  where dept_name = "Finance" and salary = 80000
  ```

• Possible strategies for processing query using indices on single attributes:

 1. Use index on `dept_name` to find instructors with department name Finance; test `salary = 80000`

 2. Use index on `salary` to find instructors with a salary of $80000; test `dept_name = "Finance"`

 3. Use both indices, take intersection of sets of pointers obtained
Indices on Multiple Attributes

• Composite search keys are search keys containing more than one attribute
 – e.g. (dept_name, salary)

• Lexicographic ordering: \((a_1, a_2) < (b_1, b_2)\) if either
 – \(a_1 < b_1\), or
 – \(a_1=b_1\) and \(a_2 < b_2\)

• Use this ordering to create an index (sequential or B*-tree)
Indices on Multiple Attributes

• Suppose we have an index on (dept_name, salary)
• With the **where** clause

  ```
  where dept_name = “Finance” and salary = 80000
  ```

 the index on (dept_name, salary) can be used to fetch only records that satisfy both conditions

• Using separate indices is less efficient — we may fetch many records (or pointers) that satisfy only one of the conditions
Indices on Multiple Attributes

• Note:
 – Ordering is sensitive to order of attributes
 – i.e., (salary,dept_name) would lead to a different ordering!
• With (dept_name,salary), we can efficiently retrieve
 \[\text{dept_name} = \text{“Finance” and salary} > 80000 \]
• But not
 \[\text{dept_name} > \text{“Finance” and salary} = 80000 \]
• Ordering of index is by dept_name first, then salary
Multi-Attribute Indices vs. Multiple Indices

• Multi-Attribute are faster than multiple indices
 – Make sure you only retrieve the records you are interested in
 – Avoid unnecessary lookups, comparisons, and/or intersections

• On the other hand
 – Storing an index for all combinations of attributes would be costly
 • 10 attributes, all combinations of only 2 attributes → 100 indices!
 – Think: storage capacity
 – Think: cost of insert/update/delete operations

• Typical considerations
 – Heavily used attribute combinations
 – Expected runtime disadvantage of individual indices
Indexing vs. Hashing

- **Index structures:**
 - Look up value
 - Retrieve storage location (e.g., row number in table)

- **Hashing:**
 - Compute storage location directly from the value using a hash function
Static Hashing

- A **bucket** is a unit of storage containing one or more records (a bucket is typically a disk block)
- In a **hash file organization**, we obtain the bucket of a record directly from its search-key value using a **hash function**
- Hash function h is a function from the set of all search-key values K to the set of all bucket addresses B
- Hash function is used to locate records for access, insertion as well as deletion
- Records with different search-key values may be mapped to the same bucket; thus entire bucket has to be searched sequentially to locate a record
Example for a Hash Function

- There are 10 buckets
- The binary representation of the \(i \)th character is assumed to be the integer \(i \)
- The hash function returns the sum of the binary representations of the characters modulo 10
- e.g., \(h(\text{Music}) = 1 \) \(h(\text{History}) = 2 \)
 \(h(\text{Physics}) = 3 \) \(h(\text{Elec. Eng.}) = 3 \)
Hash Functions

• A hash function should be
 – *uniform*, i.e., each bucket is assigned the same number of search-key values
 – *random*, i.e., the size of buckets should be independent of the actual distribution of search-key values
 • e.g., language is not uniformly distributed

• Worst case hash function maps all search-key values to the same bucket
 – access time proportional to the number of search-key values in the file

• Typical hash functions perform computation on the internal binary representation of the search-key
 – e.g., for a string search-key, the binary representations of all the characters in the string could be added and the sum modulo the number of buckets could be returned
Bucket Overflow

• Typical implementation:
 – Buckets have fixed size (e.g., block size on disk)

• Bucket overflow: insufficient bucket for records to store

• Possible reasons:
 – multiple records have same search-key value
 – chosen hash function produces non-uniform distribution of key values

• Bucket overflow cannot be avoided completely
 – Solution: use overflow buckets

• ...but its probability can be minimized by the choice of a good (i.e., almost uniform) hash function and suitable bucket size
Bucket Overflow

- **Overflow chaining** (also called closed hashing)
 - the overflow buckets of a given bucket are chained together in a linked list

![Diagram of bucket chaining]

bucket 0

bucket 1

bucket 2

bucket 3

overflow buckets for bucket 1
Hash Indices

- Hashing can be used not only for file organization, but also for index-structure creation
 - A **hash index** organizes the search keys, with their associated record pointers, into a hash file structure

```plaintext
bucket 0
  76766

bucket 1
  45565
  76543

bucket 2
  22222

bucket 3
  10101

bucket 4

bucket 5
  15151
  33456
  22222
  98345

bucket 6
  83821

bucket 7
  12121
  32343
```

- **overflow bucket**
- **empty bucket**
Drawbacks of Static Hashing

• In static hashing, function h maps search-key values to a fixed set of B of bucket addresses
 – But databases may grow or shrink over time
• Growing database
 – performance degrades due to many overflow buckets
• Shrinking database
 – space is wasted by underfull buckets
• Possible solution: periodic re-organization of the file with a new hash function
 – Expensive, disrupts normal operations
• Better solution
 – allow the number of buckets to be modified dynamically
 – aka dynamic hashing
Dynamic Hashing

- Good for database that grows and shrinks in size
- Allows the hash function to be modified dynamically
- **Extendable hashing** – one form of dynamic hashing
 - Hash function generates values over a large range
 - Typically b-bit integers, e.g., $b = 32$.
- At any time use only a prefix of the hash function to index into a table of bucket addresses
 - Let the length of the prefix be i bits, $0 \leq i \leq 32$.
 - Bucket address table size = 2^i. Initially $i = 0$
- Value of i grows and shrinks as the size of the database grows and shrinks
- Multiple entries in the bucket address table may point to a bucket (why?)
 - Thus, actual number of buckets is $< 2^i$
 - Number of buckets also changes dynamically by merging and splitting buckets
Extendable Hash Structure

- Example:
 - more hash values with prefix “1” than with prefix “0”
Extendable Hashing

• Each bucket j stores a value i_j

• All the entries that point to the same bucket have the same values on the first i_j bits

• To locate the bucket containing search-key K_j:
 1. Compute $h(K_j) = X$
 2. Use the first i bits of X as a displacement into bucket address table, and follow the pointer to appropriate bucket

• To insert a record with search-key value K_j
 – follow same procedure as look-up and locate the bucket, say j
 – If there is room in the bucket j insert record in the bucket
 – else the bucket must be split and insertion re-attempted

• Deletion may cause a merge of buckets

• Overflow buckets may still be needed for key collisions
Extendable Hashing – Example

• Bucket size: 2

<table>
<thead>
<tr>
<th>dept_name</th>
<th>h(dept_name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>0010 1101 1111 1011 0010 1100 0011 0000</td>
</tr>
<tr>
<td>Comp. Sci.</td>
<td>1111 0001 0010 0100 1001 0011 0110 1101</td>
</tr>
<tr>
<td>Elec. Eng.</td>
<td>0100 0011 1010 1100 1100 0110 1101 1111</td>
</tr>
<tr>
<td>Finance</td>
<td>1010 0011 1010 0000 1100 0110 1001 1111</td>
</tr>
<tr>
<td>History</td>
<td>1100 0111 1110 1101 1011 1111 0011 1010</td>
</tr>
<tr>
<td>Music</td>
<td>0011 0101 1010 0110 1100 1001 1110 1011</td>
</tr>
<tr>
<td>Physics</td>
<td>1001 1000 0011 1111 1001 1100 0000 0001</td>
</tr>
</tbody>
</table>
Extendable Hashing – Example

- After insertion of Mozart, Srinivisan, Wu
Extendable Hashing – Example

- After insertion of Einstein

<table>
<thead>
<tr>
<th>dept_name</th>
<th>h(dept_name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>0010 1101 1111 1011 0010 1100 0011 0000</td>
</tr>
<tr>
<td>Comp. Sci.</td>
<td>1111 0001 0010 0100 1001 0011 0110 1101</td>
</tr>
<tr>
<td>Elec. Eng.</td>
<td>0100 0011 1010 1100 1100 0110 1101 1111</td>
</tr>
<tr>
<td>Finance</td>
<td>1010 0011 1010 0000 1100 0110 1001 1111</td>
</tr>
<tr>
<td>History</td>
<td>1100 0111 1110 1101 1011 1111 0011 1010</td>
</tr>
<tr>
<td>Music</td>
<td>0011 0101 1010 0110 1100 1001 1110 1011</td>
</tr>
<tr>
<td>Physics</td>
<td>1001 1000 0011 1111 1001 1100 0000 0001</td>
</tr>
</tbody>
</table>

Bucket 0

- 15151 Mozart Music 40000

Bucket 1

- 12121 Wu Finance 90000
- 22222 Einstein Physics 95000

Bucket 2

- 10101 Srinivisan Comp.Sci 90000

Pointers to same bucket
Extendable Hashing – Example

- After insertion of Gold, El Said
Extendable Hashing – Example

After inserting Feinman

- **Bucket 0**
 - 15151, Mozart, Music, 40000

- **Bucket 1**
 - 22222, Einstein, Physics, 95000
 - 33456, Gold, Physics, 87000

- **Bucket 1a**
 - 47035, Feinman, Physics, 92000

- **Bucket 2**
 - 12121, Wu, Finance, 90000

- **Bucket 3**
 - 10101, Srinivisan, Comp.Sci, 90000
 - 32343, El Said, History, 60000

Overflow bucket
Extendable Hashing

• Benefits
 – Hash performance does not degrade with growth of file
 – Minimal space overhead

• Disadvantages
 – Extra level of indirection to find desired record
 – Bucket address table may itself become very big (larger than memory)
 • Cannot allocate very large contiguous areas on disk either
 • Solution: B+-tree structure to locate desired record in bucket address table
 – Changing size of bucket address table is an expensive operation
Comparison of Indexing and Hashing

• Expected type of queries:
 – Hashing is generally better at retrieving records having a specified value of the key.
 – If range queries are common, ordered indices are to be preferred

• Cost of periodic re-organization

• Relative frequency of insertions and deletions

• Average vs. worst case access time

• Which index type is supported by the DBMS at hand?
Bitmap Indices

- Special type of index designed for efficient querying on multiple keys
- Records in a relation are assumed to be numbered sequentially from, say, 0
 - Given a number n it must be easy to retrieve record n
- Applicable on attributes that take on a relatively small number of distinct values
 - e.g. gender, country, state, ...
 - e.g. income-level (income broken up into a small number of levels such as 0-9999, 10000-19999, 20000-50000, 50000-infinity)
- A bitmap is simply an array of bits
- CPUs can process them very efficiently (i.e., 32 or 64 bits at once)
Bitmap Indices

- In its simplest form a bitmap index on an attribute has a bitmap for each value of the attribute
 - Bitmap has as many bits as records
 - In a bitmap for value v, the bit for a record is 1 if the record has the value v for the attribute, and is 0 otherwise

<table>
<thead>
<tr>
<th>record number</th>
<th>ID</th>
<th>gender</th>
<th>income_level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>76766</td>
<td>m</td>
<td>L1</td>
</tr>
<tr>
<td>1</td>
<td>22222</td>
<td>f</td>
<td>L2</td>
</tr>
<tr>
<td>2</td>
<td>12121</td>
<td>f</td>
<td>L1</td>
</tr>
<tr>
<td>3</td>
<td>15151</td>
<td>m</td>
<td>L4</td>
</tr>
<tr>
<td>4</td>
<td>58583</td>
<td>f</td>
<td>L3</td>
</tr>
</tbody>
</table>

Bitmaps for gender
- m: 10010
- f: 01101

Bitmaps for income_level
- L1: 10100
- L2: 01000
- L3: 00001
- L4: 00010
- L5: 00000
Bitmap Indices

• Bitmap indices are useful for queries on multiple attributes
 – not particularly useful for single attribute queries
• Queries are answered using bitmap operations
 – Intersection (and)
 – Union (or)
 – Negation (not)
• Each operation takes two bitmaps of the same size and applies the operation on corresponding bits to get the result bitmap
 – Males with income level L1: 10010 AND 10100 = 10000
 – People with income level L3 to L5: 00001 OR 00010 OR 00000 = 00011
 – Females with income above L1: 01101 AND (NOT 10100) = 01001
• Can then retrieve required tuples
 – Counting number of matching tuples is even faster!
Selected Other Index Types

- Tries (also known as Prefix Trees)
Selected Other Index Types

- R-Trees and kd trees
Summary

• Index structures help making queries efficient
 – Practically, speedup by many orders of magnitude
• Trading off storage against computation time
• We’ve got to know different flavors
 – Table index
 – B\(^+\)-Tree
 – Hash tables
 – Bitmap indices

• Choice of an index structure
 – Desired queries (single/multi attribute? range or value? counting?)
 – Frequency of updates
 – Real time requirements
Questions?