Overview

• Linked Open Data
 – Principles
 – Examples
 – Vocabularies
• Microdata & schema.org
• Introduction to Semantic Web Programming with Jena
Linked Open Data

• What we've got to know up to now
 – RDF as a universal language for describing things
 – RDF Schema for describing vocabularies (i.e., classes and properties)

• Linked Open Data
 – uses those techniques
 – for providing open data

• The Linked Open Data Cloud
 – has nothing to do with cloud computing
 – is a big, freely available collection of knowledge
Why “Linked” Open Data?

```turtle
:p a :Physician .
:p :hasDegree "Dr." .
:p :hasName "Mark Smith" .
p :hasAddress a .
a :street "Main Street" .
a :number "14"^^xsd:int .
a :city "Smalltown" .
p :hasOpeningHours [ 
a rdf:Bag ; 
[ :day :Monday ; 
:from "9"^^xsd:int ;
:to "11"^^xsd:int ;
]
...

:s a :City .
s :name "Smalltown" .
s :lat "49.86"^^xsd:double .
s :long "8.65"^^xsd:double .
s :district "Birmingham" .
...

:d a :District .
d :name "Birmingham" .
d :pop "347891"^^xsd:int .
d :locatedIn "England" .
...
```
Why “Linked” Open Data?

• Information is scattered on the Web
 – that also holds for the Semantic Web

• HTML also has a concept for interlinking scattered information
 – known as hyperlink
 – More information at W3C

• Linked Open Data uses that principle, too
Why “Linked” Open Data?

:p a :Physician .
:p :hasDegree "Dr." .
:p :hasName "Mark Smith" .
:p :hasAddress :a .
:a :street "Main Street" .
a :number "14"^^xsd:int .
a :city
 <http://.../smalltown> .
:p :hasOpeninghours [a rdf:Bag ;
 [:day :Monday;
 :from "9"^^xsd:int;
 :to "11"^^xsd:int;
]
] ...

:s a :City .
:s :name "Smalltown" .
:s :lat "49.86"^^xsd:double .
:s :long "8.65"^^xsd:double .
:s :district
 <http://.../birmingham> .
...

:d a :District .
:d :name "Birmingham" .
:d :pop "347891"^^xsd:int .
:d :locatedIn "England" .
...
Why “Linked” Open Data?

• Linked Open Data is RDF data
 – which is provided in a distributed manner

• URIs
 – have been used as simple identifiers so far
 – in LOD: links to data
 • resolvable!
 • "dereferencable URIs" (URLs)
 • can be used together with content negotiation, RDFa, etc.
Why “Linked” Open Data?

• Example:
 – `<#Heiko> :worksIn <http://dbpedia.org/resource/Mannheim> .`
Why “Linked” Open Data?

- Example:
 - `<#Heiko> :worksIn <http://dbpedia.org/resource/Mannheim>`.
HTML Links vs. Links in Linked Open Data

• Compare

to

• Observation:
 − Links in Linked Open Data are always <i>explicitly</i> typed
 − The semantics of the link is thus interpretable
 • given that the predicate is defined in a schema
Links in Linked Open Data

- Important special case: owl:sameAs

* We don't know OWL yet, never mind, we'll get to that...
Links in Linked Open Data

• Important special case: `owl:sameAs`
 - Links two *identical* resources
 - This is required due to the non-unique naming assumption

• One of the most commonly misused concepts in the Semantic Web...
• Use:
 - Two datasets with information about the same person
• Abuse:
 - A dataset with information about a person and the person's homepage
 - The Starbucks in O7 and the company Starbucks
 - The state and the city of Hamburg
 - The parliament as an institution and the parliament as a building

* We don’t know OWL yet, never mind, we’ll get to that...
Links in Linked Open Data

- Alternatives to abusing `owl:sameAs`
 - General link to other resources: `rdfs:seeAlso`
 - Link to (HTML) homepage: `foaf:homepage`

* We don't know OWL yet, never mind, we'll get to that...
Linking to a Schema

- Another important special case:
 - linking to a schema
 - luckily, everything is identified by a URI (also properties and classes)

```
:Heiko
<http://xmlns.com/foaf/0.1/name> "Heiko Paulheim" .
```
Linking to a Schema

- btw: this also works for "built in" schemas

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
Four Principles of Linked Open Data

- The four Principles by Tim Berners-Lee (2006)
 1) Use URIs to identify things
 2) Use derefencable URIs
 3) Provide useful information upon derefencable URIs, use standards
 4) Add links to other datasets
What Data to Serve at a URI?

• Basic principle: provide a complete *RDF molecule* at the URI

• Definition of a complete RDF molecule:
 – All triples that have the URI as a subject or an object
 – Every blank node is connected by at least two predicates
RDF Molecules

- Avoid dead ends in browsing

Peter \(\text{knows}\) Julia

father Of

Julia
RDF Molecules

- Recap: Blank Nodes for multi-valued predicates
 - avoid (potentially useless) partial information

Recipe

- has ingredient

Sugar

- ingredient

"100"

- value

gram

- unit

amount
RDF Molecules: Theory and Practice

• Definition of a complete RDF molecule:
 – All triples that have the URI as a subject or an object
 – Every blank node is connected by at least two predicates

• Consequences:
 – Triples are duplicated (in the subject's and the object's molecule)
 • redundancy, depending on serving strategy
 – Molecules can become very big
RDF Molecules: Theory and Practice

- In theory, all triples have to be served
- Pragmatic approach:
 - Which information is interesting for a user?
 - For a person: the city of residence
 - but for a city: all persons who reside here?
• Example Graph

Mannheim

in

Uni MA

studies at

Peter

lives in

nearby

Karlsruhe

in

Uni KA

studies at

Stefan

lives in

Julia

knows

Jule

01-12-1986

born

nick
The Five Star Schema

• Five Star Scheme (Tim Berners-Lee, 2010)
 * Available on the web with an open license
 ** Available as machine-readable, structured data
 *** like ** plus using a non-proprietary format
 **** like *** plus using open standards by the W3C
 ***** like **** plus links to other datasets
Linked Open Data Best Practices

- as defined by Heath and Bizer, 2011

1) Provide dereferencable URIs
2) Set RDF links pointing at other data sources
3) Use terms from widely deployed vocabularies
4) Make proprietary vocabulary terms dereferencable
5) Map proprietary vocabulary terms to other vocabularies
6) Provide provenance metadata
7) Provide licensing metadata
8) Provide data-set-level metadata
9) Refer to additional access methods
The Linked Open Data Cloud

http://lod-cloud.net/
The Linked Open Data Cloud

• In numbers:
 – >1,000 Data sets
 – Several billion triples
 – Several million interlinks

• Topical domains:
 – Government
 – Publications
 – Life sciences
 – User-generated content
 – Cross-domain
 – Media
 – Geographic
 – Social web

http://lod-cloud.net/
The Linked Open Data Cloud

- Domains by number of datasets in Linked Open Data
 - As of 2014
 - Classified based on data provider tags
 - More than half of the datasets is social web (mostly FOAF files)
A Short History of Linked Open Data

- **May 2007:**
 ![Linking Open Data cloud diagram, as of May 2007](http://lod-cloud.net/)

- **March 2008:**
 ![Linking Open Data cloud diagram, March 2008](http://lod-cloud.net/)

- **March 2009:**
 ![Linking Open Data cloud diagram, March 2009](http://lod-cloud.net/)

- **today:**
 ![Linking Open Data cloud diagram, today](http://lod-cloud.net/)

At the Heart of the LOD Cloud: DBpedia

- General knowledge on almost five million entities
- Hundreds of millions of triples
- Linked to ~100 other datasets
 - the most interlinked dataset

http://lod-cloud.net/
DBpedia: How It Is built
DBpedia: Further Sources

Coordinates: 49°29'20"N 8°28'9"E

Climate

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record high °C (°F)</td>
<td>16.4</td>
<td>26.2</td>
<td>26.1</td>
<td>28.1</td>
<td>32.2</td>
<td>36.6</td>
<td>39.6</td>
<td>39.8</td>
<td>32.5</td>
<td>28.2</td>
<td>21.7</td>
<td>16.5</td>
<td>39.8</td>
</tr>
<tr>
<td>Average high °C (°F)</td>
<td>4.7</td>
<td>6.7</td>
<td>7.5</td>
<td>11.6</td>
<td>16.2</td>
<td>20.6</td>
<td>23.7</td>
<td>25.1</td>
<td>25.1</td>
<td>21.2</td>
<td>16.7</td>
<td>8.9</td>
<td>15.3</td>
</tr>
<tr>
<td>Daily mean °C (°F)</td>
<td>1.8</td>
<td>2.8</td>
<td>3.4</td>
<td>4.7</td>
<td>6.7</td>
<td>9.7</td>
<td>12.1</td>
<td>15.1</td>
<td>15.9</td>
<td>13.1</td>
<td>8.5</td>
<td>5.0</td>
<td>10.85</td>
</tr>
<tr>
<td>Average low °C (°F)</td>
<td>-1.3</td>
<td>-2.0</td>
<td>-2.1</td>
<td>-2.5</td>
<td>-3.9</td>
<td>-6.1</td>
<td>-8.5</td>
<td>-10.6</td>
<td>-10.9</td>
<td>-10.8</td>
<td>-8.0</td>
<td>-4.0</td>
<td>-8.3</td>
</tr>
<tr>
<td>Record low °C (°F)</td>
<td>-18.7</td>
</tr>
<tr>
<td>Average precipitation mm (inches)</td>
<td>40.9</td>
<td>43.1</td>
<td>50.8</td>
<td>49.3</td>
<td>72.6</td>
<td>66.6</td>
<td>76.6</td>
<td>57.7</td>
<td>54.1</td>
<td>56.4</td>
<td>63.5</td>
<td>54.1</td>
<td>67.0</td>
</tr>
<tr>
<td>Mean monthly sunshine hours</td>
<td>56.2</td>
<td>58.5</td>
<td>124.0</td>
<td>186.2</td>
<td>214.1</td>
<td>219.1</td>
<td>235.1</td>
<td>222.1</td>
<td>164.1</td>
<td>108.6</td>
<td>59.0</td>
<td>44.9</td>
<td>1712.2</td>
</tr>
</tbody>
</table>

Source: Data derived from Deutscher Wetterdienst[12]
DBpedia: Contents

- Data from different infoboxes (extracted from multiple languages)
- Redirects and disambiguations
- External web links
- Abstracts in multiple languages
- Instance type information
 - DBpedia Ontology
 - YAGO*
 - schema.org*
 - DOLCE**
 - ...and others

* later today
** in a few weeks
The DBpedia Ontology

- Classes:
 - 739 classes
 - partial hierarchy

- Properties:
 - ~1,100 relations
 - some with domain/range
 - ~1,700 data properties
 - i.e., literal-valued
 - a bit of hierarchy
YAGO

- Also derived from Wikipedia
 - ~4.6M entities
 - ~26M statements
- Uses Wikipedia categories for typing
 - a class hierarchy of ~500,000 types
- Tries to capture time
 - i.e., statements that held true for a period of time
 - e.g., soccer players playing for teams
 - uses reification
Wikidata

- Collaboratively edited knowledge base
- Size
 - ~15M instances
 - ~66M statements
- Ontology
 - ~23k classes
 - ~1.6k properties
- Special
 - provenance information
 - i.e., evidence: where did that statement come from?
Comparison of DBpedia, YAGO, and Wikidata

Ringler & Paulheim: *One Knowledge Graph to Rule them All?* KI 2017
Further Example Datasets

• Linked Movie Database
 – Movies, actors, directors...

• MusicBrainz
 – Artists, albums, ...

• Open Library
 – books, authors, publishers

• DBLP
 – computer science publications
Further Example Datasets

- **ProductDB**
 - products and manufacturers
- **DrugBank**
 - drugs, interactions
- **NASA Data Incubator**
 - Data on all NASA missions
- **Linked Open Numbers**
 - Numbers and their names in different languages
 - roman and arabic notations, binary, hex etc.
Example: DrugBank

- ~4,500 drugs, descriptions, manufactures, interactions...
Vocabularies

• Recap: LOD Best Practices, Principle 3:
 – Use terms from widely deployed vocabularies

• So, what are common widely deployed vocabularies?
Dublin Core

- We have already encountered this
- Usage: Metadata for resources and documents
- Namespace http://purl.org/dc/elements/1.1/
- Common prefix: dc
- defines properties, e.g.,
 - creator
 - subject
 - date
- Resources: DCMI Type Vocabulary:
 - Text
 - Image
 - Software
 - ...
FOAF (Friend of a Friend)

- Persons and their relations
- Created for personal home pages
 - but used widely beyond that
- Namespace http://xmlns.com/foaf/0.1/
- Common prefix: foaf:

- Important classes
 - Person
 - Group
 - Organization
 - Project
 - ...

- Important properties
 - name, firstName, lastName
 - phone, mbox, homepage
 - knows
 - currentProject, pastProject
 - ...
FOAF (Friend of a Friend)

Peter

- foaf:nick: "Pete"
- foaf:firstname: "Peter"
- foaf:lastname: "Smith"
- foaf:knows: Julia

Julia
"Improving the usability of integrated applications by using visualizations of linked data"
WGS 84

- Encodes geographic data
- World Geodetic System 1984
- 3D reference model
- Namespace http://www.w3.org/2003/01/geo/wgs84_pos#
- Common prefix: geo:

- Classes:
 - SpatialThing
 - Point

- Properties:
 - latitude
 - longitude
 - altitude
 - location
Publishing Linked Open Data

• Possible variants
 – hand coded
 – from triple stores
 – from relational databases
Linked Data from Triple Stores

- Triple Store: RDF storage engine
 - e.g., Virtuoso
- Pubby: Front end for triple stores
- Supports content negotiation etc.

![Diagram showing the process of linked data from triple stores](image)
Linked Open Data from RDBMS

- D2R: Linked Open Data interface on relational databases
 - e.g., MySQL

Intelligent Agent → RDF → D2R Server → Mapping → Relational Database → HTML → Browser
Linked Open Data from RDBMS

<table>
<thead>
<tr>
<th>ID (int)</th>
<th>name (text)</th>
<th>location (int)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1327890123</td>
<td>"Heiko"</td>
<td>"Mannheim"</td>
</tr>
</tbody>
</table>

map:Person a d2rq:ClassMap;
d2rq:dataStorage map:Database1.
d2rq:class foaf:Person;
d2rq:uriPattern "http://foo.bar/p @@Person.ID@@";
.
map:personName a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:Person;
d2rq:property foaf:name;
d2rq:column "Person.name";
d2rq:datatype xsd:string;
.
map:location a d2rq:PropertyBridge;
d2rq:belongsToClassMap map:Person;
d2rq:property foaf:basedNear;
d2rq:column "Person.location";
d2rq:datatype xsd:string;
.
<http://foo.bar/p1327890123> a foaf:Person .
Microdata and schema.org

- We have already seen that in the first lecture

```html
<div itemscope
itemtype="http://schema.org/PostalAddress">
  <span itemprop="name">Data and Web Science Group</span>
  _:1 a <http://schema.org/PostalAddress> .
  _:1 <http://schema.org/name> "Data and Web Science Group" .
  _:1 <http://schema.org/addressLocality> "Mannheim" .
  _:1 <http://schema.org/addressCountry> "Germany" .
</div>
```
Microdata and schema.org

- schema.org defines (among others)
 - products
 - product offers
 - businesses and local businesses (stores, cafés, …)
 - books, movies, records
 - events
 - recipes
 - persons
 - …
Movie

Thing > CreativeWork > Movie

A movie.

Usage: Between 10,000 and 50,000 domains

<table>
<thead>
<tr>
<th>Property</th>
<th>Expected Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>actor</td>
<td>Person</td>
<td>An actor, e.g. in tv, radio, movie, video games etc. Actors can be associated with individual items or with a series, episode, clip. Supersedes actors.</td>
</tr>
<tr>
<td>director</td>
<td>Person</td>
<td>A director of e.g. tv, radio, movie, video games etc. content. Directors can be associated with individual items or with a series, episode, clip. Supersedes directors.</td>
</tr>
<tr>
<td>duration</td>
<td>Duration</td>
<td>The duration of the item (movie, audio recording, event, etc.) in ISO 8601 date format.</td>
</tr>
<tr>
<td>musicBy</td>
<td>MusicGroup or Person</td>
<td>The composer of the soundtrack.</td>
</tr>
<tr>
<td>productionCompany</td>
<td>Organization</td>
<td>The production company or studio responsible for the item e.g. series, video game, episode etc.</td>
</tr>
<tr>
<td>subtitleLanguage</td>
<td>Text or Language</td>
<td>Languages in which subtitles/captions are available, in IETF BCP 47 standard format.</td>
</tr>
<tr>
<td>trailer</td>
<td>VideoObject</td>
<td>The trailer of a movie or tv/radio series, season, episode, etc.</td>
</tr>
</tbody>
</table>

Properties from CreativeWork

<table>
<thead>
<tr>
<th>Property</th>
<th>Expected Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>about</td>
<td>Thing</td>
<td>The subject matter of the content.</td>
</tr>
<tr>
<td>accessibilityAPI</td>
<td>Text</td>
<td>Indicates that the resource is compatible with the referenced accessibility API (WebSchemas wiki lists possible values).</td>
</tr>
<tr>
<td>accessibilityControl</td>
<td>Text</td>
<td>Identifies input methods that are sufficient to fully control the described resource (WebSchemas wiki lists possible values).</td>
</tr>
<tr>
<td>accessibilityFeature</td>
<td>Text</td>
<td>Content features of the resource, such as accessible media, alternatives and supported enhancements for accessibility (WebSchemas wiki lists possible values).</td>
</tr>
<tr>
<td>accessibilityHazard</td>
<td>Text</td>
<td>A characteristic of the described resource that is physiologically dangerous to some users. Related to WCAG 2.0 guideline 2.3 (WebSchemas wiki lists possible values).</td>
</tr>
<tr>
<td>accountablePerson</td>
<td>Person</td>
<td>Specifies the Person that is legally accountable for the CreativeWork.</td>
</tr>
<tr>
<td>aggregateRating</td>
<td>AggregateRating</td>
<td>The overall rating, based on a collection of reviews or ratings, of the item.</td>
</tr>
<tr>
<td>alternativeHeadline</td>
<td>Text</td>
<td>A secondary title of the CreativeWork.</td>
</tr>
</tbody>
</table>
Main topics of schema.org:
- Meta information on web page content (web page, blog...)
- Business data (products, offers, ...)
- Contact data (businesses, persons, ...)
- (Product) reviews and ratings

...and a massive long tail
Growth of schema.org

• Note: schema.org is mainly used with Microdata
 - ...and Microdata is mainly used with schema.org

http://webdatacommons.org/structureddata/2016-10/stats/stats.html
Microdata/schema.org vs. Linked Open Data

• Commonalities
 – Both encode machine-interpretable knowledge
 – Schema.org uses a standard vocabulary
 – Both can be encoded as RDF
Microdata/schema.org vs. Linked Open Data

• Differences
 – Microdata is embedded in the DOM tree
 • i.e., the resulting RDF is always a set of trees
 • not a general directed graph
 • no cycles, no reification
 – Microdata uses only blank nodes and literals
Microdata/schema.org vs. Linked Open Data

- Linked Data Principles (Tim Berners-Lee 2006)
 - Use URIs as names for things
 - Use HTTP URIs that can be looked up
 - When someone looks up a HTTP URI, provide useful information using a standard

```html
<div itemscope itemtype="http://schema.org/PostalAddress">
  <span itemprop="name">Data and Web Science Group</span>
</div>
```
Microdata/schema.org vs. Linked Open Data

• Linked Data Principles (TimBL 2006)
 – Use URIs as names for things
 – Use HTTP URIs that can be looked up
 – When someone looks up a HTTP URI, provide useful information using a standard
 – Include links to other URIs

 This is possible with schema.org/sameas

• Linkage within schema.org Microdata:
 – Only 0.02% of all data providers use schema.org/sameas
Microdata/schema.org vs. LOD

• Five Star Scheme (TimBL 2010)
 * Available on the web with an open license
 ** Available as machine-readable, structured data
 *** as (**), using a non-proprietary format
 **** plus: using open standards by the W3C
 ***** plus: links to other datasets

• What's the license of web data?
Intermediate Summary

• Until today, we have dealt with the Semantic Web as a *vision*
• Today, we have seen two incarnations of that vision
 – Linked Open Data
 – schema.org/Microdata
• Both have a lot in common
And Now for Something Completely Different
Let's start with a simple application

- a Hello World application for the Semantic Web
Using only Plain Java

```java
URL url = new URL("http://dbpedia.org/resource/Mannheim");
URLConnection conn = url.openConnection();
conn.addRequestProperty("Accept", "text/rdf+n3");
BufferedReader BR = new BufferedReader(new InputStreamReader(conn.getInputStream()));

while(BR.ready()) {
    String triple = BR.readLine();
    StringTokenizer tokenizer = new StringTokenizer(triple, " ");
    String subject = tokenizer.nextToken();
    String predicate = tokenizer.nextToken();
    String object = tokenizer.nextToken();
   ...
}
```
Using only Plain Java

• Let's start with a simple application
 – a Hello World application for the Semantic Web

• Using plain Java is possible
 – but not very comfortable
 – there are more sophisticated frameworks
Programming with Jena

- Jena is a well-known Semantic Web programming framework
- started in 2000 at HP Labs
- Apache open source project since 2010

- Central concepts
 - Models (class Model) are RDF graphs
 - Resources (class Resource) are resources in RDF graphs

- Special features
 - Database connectors for persistence
 - Support for reasoning
 - Rule engines
 - Support for SPARQL (see next lecture)
Programming with Jena

• Reading a model from a derefencable URI

```java
model.read("http://dbpedia.org/resource/Mannheim");
```

• Navigating within a model

```java
Resource mannnheim =
    model.getResource("http://dbpedia.org/resource/Mannheim");

Resource countryOfMannheim =
    darmstadt.getProperty(
        "http://dbpedia.org/ontology/country").
    getResource();
```
Programming with Jena

• Working with literals

Literal lit = mannheim.getProperty("http://www.w3.org/2000/01/rdf-schema#label").getLiteral();
lit.getString();
lit.getLanguage();
lit.getDatatype();
• Working with multi-valued relations

- StmtIterator iter = mannheim.getProperty("http://www.w3.org/2000/01/rdf-schema#label");
- while (iter.hasNext()) {
 Statement s = iter.next();
 RDFNode node = s.getObject();
 if (node.isLiteral())
 System.out.println(node.asLiteral().getString());
}

creates an iterator over all triples with the subject node and the given predicate
Iterators in Jena

- Jena uses the iterator pattern quite frequently
- e.g.:

  ```java
  StmtIterator iter = mannheim.getProperty("http://www.w3.org/2000/01/rdf-schema#label");
  ```

- But there is no such thing as

  ```java
  Collection<Statement> triples = mannheim.getProperty("http://www.w3.org/2000/01/rdf-schema#label");
  ```

- Why?
Iterators in Jena

- Data volumes in the Semantic Web can be big
- e.g., reading all triples from DBpedia
 - stored in List<Statement> would kill the main memory
 - iterators allow a more efficient memory use
Programming with Jena

• Manipulating models

```java
pl.addProperty("http://xmlns.com/foaf/0.1/knows", p2);
```

• Watching model changes

```java
class MyListener implements ModelChangedListener...
MyListener listener = new MyListener();
model.add(listener);
```
Reasoning with Jena

• Recap: we can derive information from a schema (T-Box) and data (A-box)
 :knows rdfs:domain :Person .
 :knows rdfs:range :Person .
 :Peter :knows :Tom .
 → :Peter a :Person .
 → :Tom a :Person .

• Jena also supports reasoning
Reasoning with Jena

• Given: a schema and some data

```java
Model schemaModel = ModelFactory.createDefaultModel();
InputStream IS = new FileInputStream("data/example_schema.rdf");
schemaModel.read(IS);

Model dataModel = ModelFactory.createDefaultModel();
IS = new FileInputStream("data/example_data.rdf");
dataModel.read(IS);

Model reasoningModel =
    ModelFactory.createRDFSModel(schemaModel, dataModel);
```

• Now, reasoningModel contains all derived facts
Reasoning with Jena

- Now, reasoningModel contains all derived facts

```java
StmtIterator it = reasoningModel.listStatements();
while(it.hasNext()) {
    Statement s = it.next();
    System.out.println(s);
}
```

- Output:
Wrap-Up

• Today, we have seen
 – two incarnations of the Semantic Web
 – i.e., Linked Open Data
 – and Microdata/schema.org

• ...and we have learned how to write programs consuming Semantic Web data
 – Jena programming framework
 – loading RDF from files and from URLs
 – performing reasoning
Semantic Web – Architecture

here be dragons...

Semantic Web Technologies (This lecture)

Technical Foundations

Berners-Lee (2009): Semantic Web and Linked Data
Questions?