Semantic Web Technologies
Web Ontology Language (OWL)
Part II

Heiko Paulheim
Previously on “Semantic Web Technologies”

• We have got to know
 – OWL, a more powerful ontology language than RDFS
 – Simple ontologies and some reasoning
 – Sudoku solving

• Today
 – New constructs in OWL2
 – Russell's paradox
 – Reasoning in OWL
 – Complexity of ontologies
 – A peek at rule languages for the Semantic Web
Semantic Web – Architecture

here be dragons...

Semantic Web Technologies (This lecture)

Technical Foundations

Berners-Lee (2009): Semantic Web and Linked Data
OWL2 – New Constructs and More

• Five years after the first OWL standard
• OWL2: 2009
 – Syntactic sugar
 – New language constructs
 – OWL profiles

• We have already encountered some, e.g.,
 – Qualified relations
 – Reflexive, irreflexive, and antisymmetric properties
• Disjoint classes and disjoint unions
 - OWL 1:

 :Wine owl:equivalentClass [
 a owl:Class ;

 - OWL 2:

 :Wine owl:disjointUnionOf

 - Also possible:

 _:x a owl:AllDisjointClasses ;
OWL2: Syntactic Sugar

• Negative(Object|Data)PropertyAssertion
• Allow negated statements
• e.g.: Paul is not Peter's father

\[_x [\text{a owl:NegativeObjectPropertyAssertion;}\]
 \[\text{owl:sourceIndividual :Paul ;}\]
 \[\text{owl:targetIndividual :Peter ;}\]
 \[\text{owl:assertionProperty :fatherOf } \].

• If that's syntactic sugar, it must also be possible differently
 – But how?
OWL2: Reflexive Class Restrictions

• Using hasSelf

• Example: defining the set of all autodidacts:

 :AutoDidact owl:equivalentClass [
 a owl:Restriction ;
 owl:onProperty :teaches ;
 owl:hasSelf "true"^^xsd:boolean] .
OWL2: Profiles

- Profiles are subsets of OWL2 DL
 - EL, RL und QL
 - Similar to complexity classes
- Different runtime and memory complexity
- Depending on requirements
OWL2 Profile

• OWL2 EL (Expressive Language)
 – Fast reasoning on many standard ontologies
 – Restrictions, e.g.:
 • someValuesFrom, but not allValuesFrom
 • No inverse and symmetric properties
 • No unionOf and complementOf

• OWL2 QL (Query Language)
 – Fast query answering on relational databases
 – Restrictions, e.g.:
 • No unionOf, allValuesFrom, hasSelf, …
 • No cardinalities and functional properties
OWL2 Profile

• OWL2 RL (Rule Language)
 – Subset similar to rule languages such as datalog
 • subClassOf is translated to a rule (Person ← Student)
 – Restrictions, e.g.:
 • Only qualified restrictions with 0 or 1
 • Some restrictions for head and body

• The following holds for all three profiles:
 – Reasoning can be implemented in polynomial time for each of the three
 – Reasoning on the union of two profiles only possible in exponential time
OWL2 Example: Russell's Paradox

• A classic paradox by Bertrand Russell, 1918

• In a city, there is exactly one barber who shaves everybody who does not shave themselves.

Who shaves the barber?
OWL2 Example: Russell's Paradox

• Class definitions

\[\text{People } \text{owl:disjointUnionOf} \\
\text{(:PeopleWhoShaveThemselves} \\
\text{:PeopleWhoDoNotShaveThemselves \} .}\]

• Relation definitions:

\[\text{shavedBy rdfs:domain :People .} \\
\text{shavedBy rdfs:range :People .} \\
\text{shaves owl:inverseOf :shavedBy .}\]

• Every person is shaved by exactly one person:

\[\text{People rdfs:subClassOf [} \\
\text{a owl:Restriction ;} \\
\text{owl:onProperty :shavedBy ;} \\
\text{owl:cardinality "1"^^xsd:integer] .}\]
OWL2 Example: Russell's Paradox

• Then, we define the barber:

:Barbers rdfs:subClassOf :People ;
owl:equivalentClass [
 rdf:type owl:Class ;
 owl:oneOf (:theBarber)
] .
Definition of people shaving themselves:

```
:PeopleWhoShaveThemselves owl:equivalentClass [ rdf:type owl:Class ;
  owl:intersectionOf
  ( :People
    [ a owl:Restriction ;
      owl:onProperty :shavedBy ;
      owl:hasSelf "true"^^xsd:boolean
    ]
  )
] .
```
OWL2 Example: Russell's Paradox

- Definition of people who do not shave themselves:

```
:PeopleWhoDoNotShaveThemselves owl:equivalentClass [a owl:Class ;
owl:intersectionOf ( :People
[ a owl:Restriction
owl:onProperty :shavedBy ;
owl:allValuesFrom :Barbers
]
)
].
```
OWL2 Example: Russell's Paradox

Your ontology is inconsistent which means that the OWL reasoner will no longer be able to provide any useful information about the ontology.

You have several options at this point:

- Click the Explain button to try the Protege explanation facility.
- If you think you know what the problem is, click Cancel to fix the ontology yourself.
- Some reasoners come with command line tools that will provide complete explanations for inconsistent ontologies.
OWL2 Example: Russell's Paradox

Explanation for: Thing SubClassOf Nothing

1) PersonsWhoDoNotShaveThemselves(?x) -> \textit{shaves}(the-barber, ?x)
 In 1 other justifications

2) PersonsWhoDoNotShaveThemselves \textit{DisjointWith} PersonsWhoShaveThemselves
 In ALL other justifications

3) Barber \textit{SubClassOf} Person
 In ALL other justifications

4) \textit{shaves}(?x, ?x) -> PersonsWhoShaveThemselves(?x)
 In ALL other justifications

5) \textit{shaves}(the-barber, ?x) -> PersonsWhoDoNotShaveThemselves(?x)
 In 1 other justifications

6) PersonsWhoShaveThemselves(?x) -> \textit{shaves}(?x, ?x)
 In ALL other justifications

7) Person \textit{EquivalentTo} PersonsWhoDoNotShaveThemselves \textit{or} PersonsWhoShaveThemselves
 In ALL other justifications

8) the-barber \textit{Type} Barber
 In ALL other justifications
Reasoning in OWL DL

• We have seen reasoning for RDFS
 – Forward chaining algorithm
 – Derive axioms from other axioms

• Reasoning for OWL DL is more difficult
 – Forward chaining may have scalability issues
 – Conjunction (e.g., unionOf) is not supported by forward chaining
 – Different approach: Tableau Reasoning
 – Underlying idea: find contradictions in ontology
 • i.e., both a statement and its opposite can be derived from the ontology
Typical Reasoning Tasks

• What do we want to know from a reasoner?
 – Subclass relations
 • e.g., Are all birds flying animals?
 – Equivalent classes
 • e.g., Are all birds flying animals and vice versa?
 – Disjoint classes
 • e.g., Are there animals that are mammals and birds at the same time?
 – Class consistency
 • e.g., Can there be mammals that lay eggs?
 – Class instantiation
 • e.g., Is Flipper a dolphin?
 – Class enumeration
 • e.g., List all dolphins
Example: A Simple Contradiction

• Given:

:Man a owl:Class .
:Woman a owl:Class .
:Man owl:disjointWith :Woman .

:Alex a :Man .
:Alex a :Woman .
Example: A Simple Contradiction

• We can derive:
 - :Man ∩ :Woman = ∅
 owl:Nothing owl:intersectionOf (:Man :Woman) .
 - :Alex ∈ (:Man ∩ :Woman)
 :Alex a [a owl:Class; owl:intersectionOf (:Man :Woman)] .

• i.e.:
 - :Alex ∈ ∅
 :Alex a owl:Nothing .
 - That means: the instance must not exist
 - but it does
Reasoning Tasks Revisited

• Subclass Relations
 Student ⊆ Person ⇔ „Every student is a person“

• Proof method: Reductio ad absurdum
 – "Invent" an instance i
 – Define Student(i) and ¬Person(i)
 – Check for contradictions
 • If there is one: Student ⊆ Person has to hold
 • If there is none: Student ⊆ Person cannot be derived
 – Note: it may still hold!
Example: Subclass Relations

• Ontology:

 :Student owl:subClassOf :UniversityMember .
 :UniversityMember owl:subClassOf :Person .

• Invented instance:

 :i a :Student .

• We have

 :i a :Student .
 :Student owl:subClassOf :UniversityMember .

 Thus

 :i a :UniversityMember .

• And from

 :UniversityMember owl:subClassOf :Person .

• We further derive that

 :i a Person .
Example: Subclass Relations

• Now, we have

\[
:i \text{ a } \text{Person} . \\
:i \text{ a } [\text{owl:complementOf :Person}] .
\]

i.e.,

\[
:i \text{ a } [\text{owl:intersectionOf (:Person [owl:complementOf :Person]]}] .
\]

• from which we derive

\[
:i \text{ a } \text{owl:Nothing} .
\]
Reasoning Tasks Revisited

• Class equivalence
 – Person \equiv \text{Human}

• Split into
 – Person \subseteq \text{Human} and
 – Human \subseteq \text{Person}

• i.e., show subclass relation twice
 – We have seen that

• Class disjointness
 – Are C and D disjoint?
 – "Invent" an instance i
 – Define C(i) and D(i)
 • We have done set (the Alex example)
Class Consistency

• Can a class have instances?
 – e.g., married bachelors

 :Bachelor owl:subClassOf :Man .
 :Bachelor owl:subClassOf
 [a owl:Restriction;
 owl:onProperty :marriedTo;
 owl:cardinality 0] .
 :MarriedPerson owl:subClassOf [a owl:Restriction;
 owl:onProperty :marriedTo;
 owl:cardinality 1] .

 :MarriedBachelor owl:intersectionOf
 (:Bachelor :MarriedPerson) .

• Now: invent an instance of the class
 – And check for contradictions
Reasoning Tasks Revisited

• Class Instantiation
 – Is Flipper a dolphin?

• Check:
 – define \(\neg \text{Dolphin(Flipper)} \)
 – Check for contradiction

• Class enumeration
 – Repeat class instantiation for all known instances
Typical Reasoning Tasks Revisited

• What do we want to know from a reasoner?
 – Subclass relations
 • e.g., Are all birds flying animals?
 – Equivalent classes
 • e.g., Are all birds flying animals and vice versa?
 – Disjoint classes
 • e.g., Are there animals that are mammals and birds at the same time?
 – Class consistency
 • e.g., Can there be mammals that lay eggs?
 – Class instantiation
 • e.g., Is Flipper a dolphin?
 – Class enumeration
 • e.g., List all dolphins
Typical Reasoning Tasks Revisited

• We have seen
 – All reasoning tasks can be reduced to the same basic tasks
 – i.e., consistency checking

• This means: for building a reasoner that can solve those tasks,
 – We only need a reasoner capable of consistency checking
Ontologies in Description Logics Notation

- Classes and Instances
 - \(C(x) \iff x \text{ a } C \).
 - \(R(x,y) \iff x \text{ R y} \).
 - \(C \sqsubseteq D \iff C \text{ rdfs:subClassOf D} \).
 - \(C \equiv D \iff C \text{ owl:equivalentClass D} \).
 - \(C \sqsubseteq \neg D \iff C \text{ owl:disjointWith D} \).
 - \(C \equiv \neg D \iff C \text{ owl:complementOf D} \).
 - \(C \equiv D \sqcap E \iff C \text{ owl:intersectionOf (D E)} \).
 - \(C \equiv D \sqcup E \iff C \text{ owl:unionOf (D E)} \).
 - \(T \iff \text{owl:Thing} \).
 - \(\bot \iff \text{owl:Nothing} \)
Ontologies in Description Logics Notation

- Domains, ranges, and restrictions
 - $\exists R. T \sqsubseteq C \iff R \text{ rdfs:domain } C$
 - $\forall R. C \iff R \text{ rdfs:range } C$
 - $C \sqsubseteq \forall R. D \iff C \text{ owl:subClassOf [a owl:Restriction; owl:onProperty R; owl:allValuesFrom D]}$
 - $C \sqsubseteq \exists R. D \iff C \text{ owl:subClassOf [a owl:Restriction; owl:onProperty R; owl:someValuesFrom D]}$
 - $C \sqsubseteq \geq n R \iff C \text{ owl:subClassOf [a owl:Restriction; owl:onProperty R; owl:minCardinality n]}$
Negation Normal Form (NNF)

- Transforming ontologies to Negation Normal Form:
 - \equiv und \equiv are not used
 - Negation only for atomic classes and axioms

- A simplified notation of ontologies
- Used by tableau reasoners
Negation Normal Form (NNF)

- Eliminating \sqsubseteq:
 - Replace $C \sqsubseteq D$ by $\neg C \sqcup D$
 - Note: this is a shorthand notation for $\forall x: \neg C(x) \lor D(x)$

- Why does this hold?
 - $C \sqsubseteq D$ is equivalent to $C(x) \rightarrow D(x)$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$C(x)$</td>
<td>$D(x)$</td>
<td>$C(x) \rightarrow D(x)$</td>
<td>$\neg C(x) \lor D(x)$</td>
<td></td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>
Negation Normal Form (NNF)

- Eliminating \equiv:
 - Replace $C \equiv D$ by $C \subseteq D$ and $D \subseteq C$
 - Proceed as before
- i.e.: $C \equiv D$ becomes
 - $C \subseteq D$
 - $D \subseteq C$
 - and thus
 - $\neg C \sqcup D$
 - $\neg D \sqcup C$
Negation Normal Form (NNF)

- Further transformation rules
 - $\text{NNF}(C) = C$ (for atomic C)
 - $\text{NNF}(\neg C) = \neg C$ (for atomic C)
 - $\text{NNF}(\neg \neg C) = C$
 - $\text{NNF}(C \cup D) = \text{NNF}(C) \cup \text{NNF}(D)$
 - $\text{NNF}(C \cap D) = \text{NNF}(C) \cap \text{NNF}(D)$
 - $\text{NNF}(\neg(C \cap D)) = \text{NNF}(\neg C) \cup \text{NNF}(\neg D)$
 - $\text{NNF}(\neg(C \cup D)) = \text{NNF}(\neg C) \cap \text{NNF}(\neg D)$
 - $\text{NNF}(\forall R. C) = \forall R. \text{NNF}(C)$
 - $\text{NNF}(\exists R. C) = \exists R. \text{NNF}(C)$
 - $\text{NNF}(\neg \forall R. C) = \exists R. \text{NNF}(\neg C)$
 - $\text{NNF}(\neg \exists R. C) = \forall R. \text{NNF}(\neg C)$
The Basic Tableau Algorithm

- **Tableau:** Collection of derived axioms
 - Is subsequently extended
 - As for forward chaining
- **In case of conjunction**
 - Split the tableau

<table>
<thead>
<tr>
<th>C(a)</th>
<th>D(a) ∪ E(a)</th>
<th>C(a), D(a)</th>
<th>C(a), E(a)</th>
</tr>
</thead>
</table>

![Diagram](image-url)
When is an Ontology Free of Contradictions?

- Tableau is continuously extended and split
- Free of contradictions if...
 - No further axioms can be created
 - At least one partial tableau is free of contradictions
 - A partial tableau has a contradiction if it contains both an axiom and its negation
 - e.g., Person(Peter) und ¬Person(Peter)
 - The partial tableau is then called *closed*
The Basic Tableau Algorithm

• Given: an ontology \(O \) in NNF

While not all partial tableaus are closed

* Choose a non-closed partial tableau \(T \) and an \(A \in O \cup T \)
 If \(A \) is not contained in \(T \)
 If \(A \) is an atomic statement
 add \(A \) to \(T \)
 back to *
 If \(A \) is a non-atomic statement
 Choose an individual \(i \in O \cup T \)
 Add \(A(i) \) to \(T \)
 back to *
 else
 Extend the tableau with consequences from \(A \)
 back to *
The Basic Tableau Algorithm

- Extending a tableau with consequences

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C(a)</td>
<td>Add C(a)</td>
</tr>
<tr>
<td>2</td>
<td>R(a,b)</td>
<td>Add R(a,b)</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>Choose an individual a, add C(a)</td>
</tr>
<tr>
<td>4</td>
<td>(C ∩ D)(a)</td>
<td>Add C(a) and D(a)</td>
</tr>
<tr>
<td>5</td>
<td>(C ∪ D)(a)</td>
<td>Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2</td>
</tr>
<tr>
<td>6</td>
<td>(∃R.C)(a)</td>
<td>Add R(a,b) and C(b) for a new Individual b</td>
</tr>
<tr>
<td>7</td>
<td>(∀R.C)(a)</td>
<td>Far all b with R(a,b) ∈ T: add C(b)</td>
</tr>
</tbody>
</table>
A Simple Example

• Given the following ontology:

 :Seth a :Human .
 :Seth a :Insect .

• Is this knowledge base consistent?
A Simple Example

• Given the following ontology:

 :Seth a :Human .
 :Seth a :Insect .

 The same ontology in DL-NNF:

 \neg Animal \sqcup \neg Human
 Animal \sqcup (\neg Mammal \sqcap \neg Bird \sqcap \neg Fish \sqcap \neg Insect \sqcap \neg Reptile)
 \neg Animal \sqcup (Mammal \sqcup Bird \sqcup Fish \sqcup Insect \sqcup Reptile)
 Human(Seth)
 Insect(Seth)

• Let's try how reasoning works now!
A Simple Example

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C(a)</td>
<td>Add C(a)</td>
</tr>
</tbody>
</table>

Human(Seth), Insect(Seth)
A Simple Example

Human(Seth), Insect(Seth),
(¬Animal ⊔ ¬Human)(Seth)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>Choose an individual a, add C(a)</td>
</tr>
</tbody>
</table>
A Simple Example

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>((C \sqcup D)(a))</td>
<td>Split the tableau into T1 and T2. Add C(a) to T1, D(a) to T2</td>
</tr>
</tbody>
</table>

Tableau:

- Human(Seth), Insect(Seth),
 - Animal(Seth)

- Highlighted: Human(Seth), Insect(Seth), Human(Seth)
A Simple Example

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>Choose an individual a, add C(a)</td>
</tr>
</tbody>
</table>
A Simple Example

Human(Seth), Insect(Seth),
¬Animal(Seth)
Animal(Seth)

Human(Seth), Insect(Seth),
¬Animal(Seth)
(¬Mammal ∩ ¬Bird ∩ ¬Fish ∩ ¬Insect ∩ ¬Reptile)(Seth)

Human(Seth), Insect(Seth),
¬Human(Seth)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(C ∪ D)(a)</td>
<td>Split the tableau into T1 and T2. Add C(a) to T1, D(a) to T2</td>
</tr>
</tbody>
</table>
A Simple Example

Human(Seth), Insect(Seth),
¬Animal(Seth)
Animal(Seth)

Human(Seth), Insect(Seth),
¬Animal(Seth)
(¬Mammal \cap \neg Bird \cap \neg Fish \cap \neg Insect \cap \neg Reptile)(Seth)
¬Mammal(Seth) \cap ¬Bird(Seth) \cap ¬Fish(Seth) \cap ¬Insect(Seth) \cap ¬Reptile(Seth)

Human(Seth), Insect(Seth),
¬Human(Seth)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Aussage</th>
<th>Aktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(C \cap D)(a)</td>
<td>Add C(a) and D(a)</td>
</tr>
</tbody>
</table>
Another Example

- Again, a simple ontology:

```reasoning
:Woman rdfs:subClassOf :Person .
:Man rdfs:subClassOf :Person .
:hasChild rdfs:domain :Person .
:hasChild rdfs:range :Person .
:Peter :hasChild :Julia .
:Julia a :Woman .
:Peter a :Man .
```
Another Example

• in DL NNF:
 \neg \text{Man} \sqcup \text{Person}
 \neg \text{Woman} \sqcup \text{Person}
 \exists \text{hasChild.T} \sqcup \text{Person}
 \forall \text{hasChild.Person}
 \text{hasChild(Peter,Julia)}
 \text{Woman(Julia)}
 \text{Man(Peter)}
Another Example

```
hasChild(Peter, Julia)
```

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>R(a,b)</td>
<td>Add R(a,b)</td>
</tr>
</tbody>
</table>
Another Example

```prolog
hasChild(Peter, Julia), Woman(Julia)
```

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C(a)</td>
<td>Add C(a)</td>
</tr>
</tbody>
</table>
Another Example

hasChild(Peter, Julia), Woman(Julia),
(¬∃ hasChild.T ⊔ Person)(Peter)

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>Choose an individual a, add C(a)</td>
</tr>
</tbody>
</table>
Another Example

\[
\text{hasChild}(\text{Peter}, \text{Julia}), \text{Woman}(\text{Julia}),
\neg \exists \text{hasChild}.T (\exists \text{Person})(\text{Peter}),
\neg \exists \text{hasChild}.T(\text{Peter})
\]

\[
\text{hasChild}(\text{Peter}, \text{Julia}), \text{Woman}(\text{Julia}),
\neg \exists \text{hasChild}.T(\text{Peter}),
\text{Person}(\text{Peter})
\]

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>(C \sqcup D)(a)</td>
<td>Split the tableau into (T_1) and (T_2). Add (C(a)) to (T_1), (D(a)) to (T_2)</td>
</tr>
</tbody>
</table>
Another Example

\[
\text{hasChild}(\text{Peter}, \text{Julia}), \text{Woman}(\text{Julia}), \\
(\neg \exists \text{hasChild}.T)(\text{Peter}), \\
\neg \text{ParentsOfSons}(\text{Peter})
\]

\[
\text{hasChild}(\text{Peter}, \text{Julia}), \text{Woman}(\text{Julia}), \\
(\neg \exists \text{hasChild}.T)(\text{Peter}), \\
\text{Person}(\text{Peter}), \\
\neg \text{hasChild}(\text{Peter}, b0), T(b0)
\]

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>$\exists R.C(a)$</td>
<td>Add $R(a,b)$ und $C(b)$ for a new Individual b</td>
</tr>
</tbody>
</table>
Another Example

\begin{align*}
\text{hasChild}(Peter, Julia), & \text{ Woman}(Julia), \\
(\neg \text{ParentsOfSons} \sqcup \exists \text{hasChild. Man})(Peter), & \\
\neg \text{ParentsOfSons}(Peter)
\end{align*}

\begin{align*}
\text{hasChild}(Peter, Julia), & \text{ Woman}(Julia), \\
(\neg \exists \text{hasChild.T})(Peter), & \\
\text{Person}(Peter), & \\
\neg \text{hasChild}(Peter, b0), & \text{T}(b0), \\
\neg \text{hasChild}(Peter, b1), & \text{T}(b1), \\
& \ldots
\end{align*}

<table>
<thead>
<tr>
<th>Nr</th>
<th>Axiom</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(\exists R.C(a))</td>
<td>Add R(a, b) und C(b) for a new Individual b</td>
</tr>
</tbody>
</table>
Introducing Blocking

• Observation
 – The tableau algorithm does not necessarily terminate
 – We can add arbitrarily many new axioms

<table>
<thead>
<tr>
<th>Nr</th>
<th>Aussage</th>
<th>Aktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(\exists R.C)(a)</td>
<td>Add R(a,b) und C(b) for a new Individual b</td>
</tr>
</tbody>
</table>

• Idea: avoid rule 6 if no new information is created
 – i.e., if we already created one instance b0 for instance a, then block using rule 6 for a.
Tableau-Algorithmus mit Blocking

- Given: an ontology O in NNF

 While not all partial tableaus are closed and further axioms can be created

 * Choose a non-closed partial tableau T and a non-blocked $A \in O \cup T$

 If A is not contained in T

 If A is an atomic statement

 add A to T
 back to *

 If A is a non-atomic statement

 Choose an individual $i \in O \cup T$
 Add $A(i)$ to T
 back to *

 else

 Extend the tableau with consequences from A
 back to *
Tableau Algorithm: Wrap Up

• An algorithm for description logic based ontologies
 – works for OWL Lite and DL
• We have seen examples for some OWL expressions
 – Other OWL DL expressions can be “translated” to DL as well
 – And they come with their own expansion rules
 – Reasoning may become more difficult
 • e.g., dynamic blocking and unblocking
Optimizing Tableau Reasoners

• Given: an ontology O in NNF

While not all partial tableaus are closed and further axioms can be created

* Choose a non-closed partial tableau T and a non-blocked $A \in O \cup T$

 If A is not contained in T

 If A is an atomic statement
 add A to T
 back to *

 If A is a non-atomic statement
 Choose an individual $i \in O \cup T$
 Add $A(i)$ to T
 back to *

 else

 Extend the tableau with consequences from A
 back to *
• Recap: OWL Lite has some restrictions
 – Those are meant to allow for faster reasoning

• Restrictions only with cardinalities 0 and 1
 – Higher cardinalities make blocking more complex

• unionOf, disjointWith, complementOf, closed classes, ...
 – they all introduce more disjunctions
 – i.e., more splitting operations
Complexity of Ontologies

• Reasoning is usually expensive

• Reasoning performance depends on ontology complexity
 – Rule of thumb: the more complexity, the more costly

• Most useful ontologies are in OWL DL
 – But there are differences
 – In detail: complexity classes
Simple Ontologies: ALC

• ALC: Attribute Language with Complement

• Allowed:
 – subClassOf, equivalentClass
 – unionOf, complementOf, disjointWith
 – Restrictions: allValuesFrom, someValuesFrom
 – domain, range
 – Definition of individuals
• Complexity classes are noted as letter sequences

• Using
 – S = ALC plus transitive properties (basis for most ontologies)
 – H = Property hierarchies (subPropertyOf)
 – O = closed classes (oneOf)
 – I = inverse properties (inversePropertyOf)
 – N = numeric restrictions (min/maxCardinality)
 – F = functional properties
 – Q = qualified numerical restrictions (OWL2)
 – (D) = Usage of datatype properties
Some Tableau Reasoners

- Fact
 - University of Manchester, free
 - SHIQ
- Fact++/JFact
 - Extension of Fact, free
 - SHOIQ(and a little D), OWL-DL + OWL2
- Pellet
 - Clark & Parsia, free for academic use
 - SHOIN(D), OWL-DL + OWL2
- RacerPro
 - Racer Systems, commercial
 - SHIQ(D)
Sudoku Revisited

• Recap: we used a closed class
 – Plus some disjointness
• Resulting complexity: SO
• Which reasoners do support that?
 – Fact: SHIQ :-(
 – RacerPro: SHIQ(D) :-(
 – Pellet: SHOIN(D) :-)
 – HermiT: SHOIQ :-)

\[
\begin{array}{cccc|cccc}
5 & 3 & & & 7 & & & \\
6 & & 1 & 9 & 5 & & & \\
& 9 & 8 & & & 6 & & \\
8 & & 6 & 3 & 1 & & & \\
4 & 8 & 3 & & & 1 & & \\
7 & & 2 & & & 6 & & \\
& 6 & & & 2 & 8 & & \\
& 4 & 1 & 9 & & & 5 & \\
& 8 & & & 7 & 9 & & \\
\end{array}
\]
Rules: Beyond OWL

here be dragons...

Semantic Web Technologies
(This lecture)

Technical Foundations

Berners-Lee (2009): Semantic Web and Linked Data
Limitations of OWL

• Some things are hard or impossible to express in OWL

• Example:
 – If A is a woman and the child of B
 then A is the daughter of B
Limitations of OWL

• Let's try this in OWL:

:Woman rdfs:subClassOf :Human .
:childOf a owl:ObjectProperty ;
 rdfs:domain :Human ;
 rdfs:range :Human .
:daughterOf a owl:ObjectProperty ;
 rdfs:subPropertyOf :childOf ;
 rdfs:domain :Woman .
Limitations of OWL

• What can a reasoner conclude with this ontology?

• Example:

 :Julia :daughterOf :Peter .

 → :Julia a :Woman .

• What we would like to have instead:

 :Julia :childOf :Peter .

 :Julia a :Woman .

 → :Julia :daughterOf :Peter .
Limitations of OWL

• What we would like to have:
 \[\text{daughterOf}(X,Y) \leftarrow \text{childOf}(X,Y) \land \text{Woman}(X) . \]

• Rules are flexible
• There are rules in the Semantic Web, e.g.
 – Semantic Web Rule Language (SWRL)
 – Rule Interchange Format (RIF)
 – Some more
• Some reasoners do (partly) support rules
SWRL

• Semantic Web Rule Language
 – A rule language for the Semantic Web
 – Closely interacts with OWL

• W3C Member Submission (2004)
 – i.e., no standard in the narrower sense
 – But widely used

• Tool support
 – Many reasoners
 – Protégé

• Built ins (support varies)
 – Arithmetics and comparisons
 – String operations
Example from http://www.w3.org/Submission/SWRL/
Wrap Up

• OWL comes in many flavours
 – OWL Lite, OWL DL, OWL Full
 – Detailed complexity classes of OWL DL
 – Additions and profiles from OWL2

• Reasoning is typically done using the Tableau algorithm

• Rules (e.g., SWRL)
 – Add further capabilities
 – Where OWL is still not expressive enough
Questions?