Web Data Integration: Introduction to Student Projects
Introduction to Student Projects

• Agenda
 – Overview all three exercises
 – Exercise 1
 • Requirements
 • Tool Support
 – Example settings
 – Group Phase
 • Find a group
 • Define a use case
Overview Student Projects

• Three project phases
• Phase I: now – October 22th
 – Find a partner (groups of two)
 – Decide on a use case
 – Collect data from the web
 – Profile your data
 – Define a target schema
 – Convert all your data to the target schema
Overview Student Projects

• Three project phases
• Phase II: October 23th – November 12th
 – Find duplicates in your data
 – Test different measures
 – Combine measures
 – Evaluate quality of your approach
Overview Student Projects

• Three project phases
• Phase III: November 13st – November 28th
 – Merge data in final schema
 – Experiment with different merging strategies
 – Evaluate the quality of merging strategies
 – Create your final dataset
 – Report the quality of the final dataset

• By the end of the project: submit a \textbf{final report}
 – 12 pages, datasets description, results of the exercises 1-3
Overview Student Projects

• Final Presentations: December 4th – December 5th
 – Show your use case
 – Explain your data
 – Explain the strategies you used
 – Discuss the quality of your solution
Student Projects: Grading

- 30%: project work
 - Demand of your solution
 - Quality of your solution
 - Number of alternatives examined
 - Quality of evaluation (i.e., written report)
- 20%: final presentation
 - Structure
 - Slides
 - Explanation
Overview Student Projects

• Phase I: **Data Translation**, now – October 22th
• Today
 – Find a partner
 – Decide on a domain/use case
 – Start data collection
 – Compile basic data profile
• Tomorrow
 – Introduction to **MapForce**
 – Start with Schema/Data Translation
• Until Tuesday, September 30th
 – Send a 2-3 page abstract on your planned project
• Next Thursday, October 2th
 – you get feedback on your abstract
Overview Student Projects

• Purpose of project abstract
 – check whether your ideas are feasible
 – give you additional hints

• Content
 – Brief use case description
 – Which datasets you use
 • Source
 • Schema
 • First profiling results (size, number of attributes)

• Submit via mail to volha@informatik.uni-mannheim.de
 – Tuesday, September 30th, 23:59 the latest
Overview Student Projects

• Until October 22th
 – Define a unifying schema
 – Translate your data with MapForce
 – Profile your data
Possible Use Cases

• Movies
 – Actors, directors, budget, oscar nominations...

• Countries
 – Population, area, leader, GDP, literacy rate...

• People
 – First name, last name, birth date, birth place, profession, …

• Books
 – Title, author(s), number of pages, language, publisher, translator, …
Possible Use Cases (ctd.)

• Music albums
 – Artist, title, record label, date, tracks, awards, …

• Buildings
 – City, address, coordinates, architect, height, floors, finishing date, …

• Public Funding in the EU
 – Receiver, amount, funding agency, purpose, date, …
Use Case Requirements

- At least 4 input datasets
- At least 2,500 instances in total (in joint dataset)
- At least 2 classes in target schema
 - e.g., movie and actor
- At least 50% of the instances contained in at least two datasets
- At least 10 attributes in joint dataset
 - At least 50% of the attribute values contained in at least two datasets
- At least 2 different input file formats
 - CSV, JSON, XML...
Example Use Case: Movies

• Individual Data Sets contain
 – Movies
 – Actors
 – Directors
 – Oscar Nominations & Wins
 – Golden Globe Nominations & Wins

• Joint dataset will contain
 – Movies with release date, budget,... and awards nominated/won
 – Actors and directors with birth dates
Example Use Case: Movies

• Lists of Oscar/Golden Globe nominees and winners
 – http://aggdata.com/awards/oscar
 – http://aggdata.com/awards/golden_globes

• List of The Guardian greatest films (by Genre)

• A large movie list
Example Use Case: Movies

- Popular movies from Movie DB
 - Requires registration for an API Key!
 - Results in JSON
Example Use Case: Movies

- Movie data from DBpedia
- Issue a SPARQL query against http://dbpedia.org/sparql
- Result can be stored as CSV, JSON, XML, ...

```sparql
SELECT ?title ?budget ?gross ?director
WHERE {
  ?x a dbpedia-owl:Film .
  ?x dbpedia-owl:gross ?gross .
  ?x dbpedia-owl:director ?d .
  FILTER(LANG(?title)="en")
}
```
Example Use Case: Geographic Data

- Several data tables about countries from World Fact Book (CIA)
 - e.g., health data, transportation data, ...

- European countries and regions:

- Country data from Geonames:
 - http://download.geonames.org/export/dump/countryInfo.txt

- City data (>15k inhabitants) from Geonames:
 - http://download.geonames.org/export/dump/cities15000.zip
Example Use Case: Geographic Data

- http://www.nationsonline.org
 - Various data on population, cities, …
- ...and of course, you can add data from DBpedia
- Note: there are only ~200 countries
 - thus, you'll have to add other entities to make it >2,500, e.g., cities
Example Use Case: Person Data

• Specific: Nobel prizes
• Nobel Prize Winners as Linked Data:
 – http://data.nobelprize.org/directory/laureate

• Data on Nobel Prize Winners:
 – http://aggdata.com/awards/nobel_prize_winners

• Wikipedia tables
 – First two search results on Google tables

• ...and of course: DBpedia
Searching for Data Sources

- Web data catalogs
 - e.g., datahub.io – lists more than 10,000 data sets
Searching for Data Sources

• Getting data from Web APIs
 – e.g., programmableweb.com – lists almost 10,000 APIs
 – requires some additional effort (using the API and getting the data)
Searching for Data Sources

• Google Tables:
 – http://research.google.com/tables
 – Search for tables (e.g., “oscar winning movies”)
 – Press “Import data” → “Import to Fusion Tables”
 – Press “See table”
 – Use “File”->”Download” to download a CSV

• Web tables in General
 – e.g., Firefox plugin “Export CSV”
 – Exports a table to CSV on right click
Searching for Data Sources

• DBpedia is a useful source for almost all kinds of data
• Look at a single resource
• Look which properties are there (preferable dbpedia-owl)
• Construct a SPARQL query
• Go to http://dbpedia.org/sparql and get the data
• Optional: recursion, include more properties

• Hint: use OPTIONAL for properties that are not present for all entities:

```
SELECT ?title ?budget ?gross ?director
WHERE {
  ?x a dbpedia-owl:Film .
  OPTIONAL {?x dbpedia-owl:gross ?gross .}
...
```

There are 87,000 Films in DBpedia, but only 9,000 with gross
Creating a Unifying Schema

- Have a look at your input data
 - Which entities exist?
 - What attributes do they have?
 - Maximal expressivity vs. maximal integration
 - e.g., first name and last name would be more expressive
 - but you should evaluate whether the conversion is always possible

- E.g.
 - Movie: title, date, budget, revenue, oscar...
 - Actor/Director: first name, last name, birth date, nationality, ...

```plaintext
Movie  Actor (n:m)  Person
       Director(n:1)
```
Creating a Unifying Schema

• Hint: create an example XML for your use case

```xml
<movies>
  <movie>
    <title>2001</title>
    <director>
      <firstname>Stanley</firstname>
      <lastname>Kubrick</lastname>
      ...
    </director>
  </movie>
  ...
</movies>
```
Data Profiling

• Create a basic profile of your data
 – Number of entities
 – Catalog of attributes
 • Name
 • Data type (number, date, string, ...)
 • For numbers: min, max, mean
 • % complete (i.e., how many instances have the attribute?)
 – Estimated overlap of instances/number of duplicates
 • Take small samples of each dataset
 • Try to find them manually
 – e.g., search for person name from dataset 1 in dataset 2

• A preliminary version should be included into your project abstract
 – Datasets size, number of attributes, rough estimate of the overlap
Outlook

• Tomorrow:
 – Translating your data into the unifying schema
 – Using MapForce
...and now

- Find a partner
- Define a use case
- Start collecting data