Outline

1. Introduction
2. Tuple Matching
3. Blocking
4. Evaluation
5. Similarity Measures – In Detail
6. Learning Matching Models
7. References
1. Introduction

Goal of Identity Resolution: Find all records in all data sources that refer to the same real-world entity („synonymous“ records).

- The problem appears whenever
 1. data from multiple sources is combined.
 2. a single data source should be cleaned (de-duplicated).
- Various commercial tools are available, especially for CRM domain.
Negative Effects of Duplicates within a Data Source

1. Unnecessary memory and processing power consumption

2. Queries give you wrong results
 - Number of customers != SELECT COUNT(*) FROM customer
 - turnover != SELECT SUM(sales value) FROM sales

3. You just see parts and not the whole
 - wrong assessment of customer value for CRM
 - customers that exceed credit limits are not recognized
 - multiple mailings of same catalog to same household
 - quantity discounts are not used when ordering from a supplier
 - …
Ironically, “Identity Resolution” has many Synonyms

- Duplicate detection
- Record linkage
- Household matching
- Mixed and split citation problem
- Object identification
- Match
- Deduplication
- Reference matching
- Object consolidation
- Entity resolution
- Fuzzy match
- Entity clustering
- Identity uncertainty
- Approximate match
- Reference reconciliation
- Hardening soft databases
- Merge/purge
- Householding
- Doubles
The Two central Challenges of Identity Resolution

- **Challenge 1**: Representations of the same real-world entity are not identical.
 - *Fuzzy duplicates*
- **Solution**: Similarity measures
 - Compare multiple attributes of the tuples using attribute-specific similarity measures.

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chris Miller</td>
<td>12/20/1982</td>
<td>Bardon Street, Melville</td>
</tr>
<tr>
<td>Christian Miller</td>
<td>2/20/1982</td>
<td>7 Bardon St., Melville</td>
</tr>
<tr>
<td>Chris Miller</td>
<td>12/14/1973</td>
<td>7 Bardon St., Madison</td>
</tr>
</tbody>
</table>

- **Questions**:
 - What is the right similarity measure for each attribute?
 - How should the similarity values of multiple attributes be combined/weighted?
A Wide Range of Similarity Measures exists

- **Edit-based**
 - Levenshtein
 - Hamming
 - Damerau-Levenshtein
 - Smith-Waterman
 - Smith-Waterman-Gotoh

- **Token-based**
 - Jaro
 - Jaro-Winkler
 - Words / n-grams
 - Jaccard
 - Dice

- **Datatype-specific**
 - Numerical attributes
 - Dates Times
 - Geo Coordinates
 - Soundex
 - Kölner Phonetik
 - Soft TF-IDF

- **Hybrid**
 - Monge-Elkan
 - Cosine Similarity
 - Soft TF-IDF
 - Double Metaphone

- **Phonetic**
 - Metaphone
 - Double Metaphone
The Two central Challenges of Identity Resolution

- **Challenge 2**: Data sets are large.
 - Quadratic complexity: Comparing every pair of records is too expensive.
- **Solution**: Blocking Algorithms
 - E.g., avoid comparisons by partitioning.
Identity Resolution

- Context
 - Relational
 - XML
 - RDF
 - Domain-independent
 - Edit-based
 - Token-based
 - Relationship-aware

- Similarity measure
 - Domain-dependent
 - Rules

- Algorithm
 - Partitioning
 - Relationships
 - Clustering / Learning
 - Incremental / Search

- Evaluation
 - Precision / Recall
 - Efficiency
 - Data types
 - Relationship-aware

- Identity Resolution
2. Tuple Matching

\[R_1 \times R_2 \]

Similarity measure

Match

Non-Match

manual review

\[\text{sim} > \theta \]

\[\text{sim} < \theta \]
2.1 Linearly Weighted Combination Rules

- Compute the sim score between tuples x and y as a linearly weighted combination of individual sim scores

 $\text{sim}(x,y) = \sum_{i=1}^{n} \alpha_i \times \text{sim}_i(x, y)$

 - n is number of attributes in each table
 - $\text{sim}_i(x,y)$ is a sim score between the i-th attributes of x and y
 - $\alpha_i \in [0,1]$ is a pre-specified weight that indicates the important of the i-th attribute to $\text{sim}(x,y)$, such that $\sum_{i=1}^{n} \alpha_i = 1$

- We declare x and y matched if $\text{sim}(x,y) \geq \beta$ for a pre-specified β, and not matched otherwise

 - in another variation: declare x and y matched if $\text{sim}(x,y) \geq \beta$, not matched if $\text{sim}(x,y) < \gamma$. and subject to human review if $\text{sim}(x,y)$ in between.
Example

\[
\text{sim}(x, y) = 0.3s_{\text{name}}(x, y) + 0.3s_{\text{phone}}(x, y) + 0.1s_{\text{city}}(x, y) + 0.3s_{\text{state}}(x, y)
\]

- \(s_{\text{name}}(x, y)\): based on Jaro-Winkler
- \(s_{\text{phone}}(x, y)\): based on edit distance between x’s phone (after removing area code) and y’s phone
- \(s_{\text{city}}(x, y)\): based on edit distance
- \(s_{\text{state}}(x, y)\): based on exact match; yes \(\Rightarrow 1\), no \(\Rightarrow 0\)

Table X

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1 Dave Smith</td>
<td>(608) 395 9462</td>
<td>Madison</td>
<td>WI</td>
</tr>
<tr>
<td>X_2 Joe Wilson</td>
<td>(408) 123 4265</td>
<td>San Jose</td>
<td>CA</td>
</tr>
<tr>
<td>X_3 Dan Smith</td>
<td>(608) 256 1212</td>
<td>Middleton</td>
<td>WI</td>
</tr>
</tbody>
</table>

Table Y

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1 David D. Smith</td>
<td>395 9426</td>
<td>Madison</td>
<td>WI</td>
</tr>
<tr>
<td>Y_2 Daniel W. Smith</td>
<td>256 1212</td>
<td>Madison</td>
<td>WI</td>
</tr>
</tbody>
</table>

Matches

\((x_1, y_1), (x_3, y_2)\)
2.2 More Complex Rules

- Appropriate when we want to encode more complex matching knowledge.

- **Example 1:** Two persons match if names match approximately and either phones match exactly or addresses match exactly
 1. If $s_{\text{name}}(x,y) < 0.8$ then return “not matched”
 2. Otherwise if $e_{\text{phone}}(x,y) = \text{true}$ then return “matched”
 3. Otherwise if $e_{\text{city}}(x,y) = \text{true}$ and $e_{\text{state}}(x,y) = \text{true}$ then return “matched”
 4. Otherwise return “not matched”

- **Example 2:** Two genes match if their names match approximately and any of the different gene identifiers matches closely (deals with missing values)
 - If $s_{\text{name}}(x,y) > 0.7$ and
 - $\max (s_{\text{genID}}(x,y), s_{\text{componentID}}(x,y), s_{\text{structureID}}(x,y)) > 0.9$
 - then return “matched”
2.3 Data Gathering for Matching

- Idea: Not only values of the records, but values of related records are relevant for the similarity computation.
 - Movies: actors
 - CDs: songs
 - Persons: spouse, children, employer
 - Customers: orders, addresses

<table>
<thead>
<tr>
<th>ID</th>
<th>City</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>New York</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Los Angeles</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>New York</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Los Angeles</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>New York</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Los Angeles</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Street</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First Ave.</td>
</tr>
<tr>
<td>2</td>
<td>High St.</td>
</tr>
<tr>
<td>3</td>
<td>Broadway</td>
</tr>
<tr>
<td>4</td>
<td>Embarcadero</td>
</tr>
<tr>
<td>5</td>
<td>Broadway</td>
</tr>
<tr>
<td>6</td>
<td>Second St.</td>
</tr>
<tr>
<td>7</td>
<td>P St.</td>
</tr>
<tr>
<td>8</td>
<td>Pennsylvania Av</td>
</tr>
<tr>
<td>9</td>
<td>Sunset Blvd</td>
</tr>
<tr>
<td>10</td>
<td>Santa Monica St</td>
</tr>
<tr>
<td>11</td>
<td>Ocean Ave.</td>
</tr>
</tbody>
</table>
Example: Matching Films

![Graph showing precision vs recall for films with and without actors]

- red: without actors
- green: with actors
2.4 Data Preprocessing for Matching

Similarity measures can only compute reliable similarity scores if data is normalized to a certain extent.

- normalize units of measurement.
 - 1000 MB vs. 1 GB

- normalize spelling
 - lower case everything, stem words

- normalize known abbreviations and synonyms
 - Inc. ➔ Incorporated, Mr. ➔ Mister
 - using a domain-specific list of abbreviations and synonyms

- translate into target language
 - Mannheim ➔ מניחים

- Resources for normalizing strings: see Chapter Schema Matching.
Example: Complex Matching Rule including Preprocessing
2.5 Local versus Global Matching

- Input: A matrix containing tuple similarities
- Output: A set of tuple pairs that should be considered as matches.

- Local Matching
 - Consider all pairs above threshold as matches.
 - Implies: One tuple can be matched with several other tuples.
 - Makes sense for duplicate detection within single data source.

- Global Matching
 - Enforce constraint that one tuple in data set A should only be matched to one tuple in data set B.
 - Makes sense for distinct data sources that do not contain duplicates.
 - Approaches:
 1. Bipartite pairs with the maximal sum of their similarity values
 2. Stable marriage (see Chapter: Schema Mapping)
Summary: The Tuple Matching Process

1. Gather Data for Matching
2. Normalize Attribute Values
3. Apply Attribute-specific Similarity Measures
4. Combine Similarity Scores
5. Decide Match/Non-Match
Real world data sets are often large.

Problem: Quadratic complexity of matching process.

- Comparison of every pair of records is too expensive:
 - 100 customers \Rightarrow 10,000 comparisons
 - 10,000 customers \Rightarrow 100 million comparisons
 - 100,000 customers \Rightarrow 10 billion comparisons

Each comparison itself is also expensive as it involves calculating various similarity scores.

- Calculation of a string similarity score often has quadratic complexity itself.

Solution: Reduce number of comparisons by

- avoiding unnecessary comparisons (next 3 slides)
- applying Blocking Methods that further reduce the number
 - Negative effect: matches might be overlooked 😞
Number of comparisons: All pairs

Complexity: n^2

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

20 records ➔ 400 comparisons
Reflexivity of Similarity

Complexity: $n^2 - n$

Similarity is reflexive: $\text{sim}(x, x) = 1$

380 comparisons
Symmetry of Similarity

Complexity: \((n^2-n) / 2\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Similarity is symmetric: \(\text{sim}(x,y) = \text{sim}(y,x)\)

190 comparisons

Still quadratic 😞
3.1 Standard Blocking

Idea: Reduce number of comparisons by partitioning the tuples into buckets and compare only tuples within each bucket.

- Examples:
 - Partition customers by first two zip-digits
 - About 100 partitions in Germany
 - About 100 customers per partition
 - \(\Rightarrow\) 495,000 comparisons instead of 49,995,000
 - Partition books by publisher
 - Partition people by first two characters of surname
- Blocking is also called hashing or partitioning

Source: wikipedia.de
Blocking by ZIP

32 comparisons
Choice of the Blocking Key

- The reduction ratio depends on effectiveness of blocking key.
 - High: If tuples are equally distributed over buckets.
 - Low: If majority of the tuples end up in one bucket.
 - Example: 90% of the customers are from Mannheim.

- Possible Solution:
 - Use combination of different attributes as blocking key.
 - Example:

<table>
<thead>
<tr>
<th>First Name</th>
<th>Name</th>
<th>Adresse</th>
<th>ID</th>
<th>Blocking Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sal</td>
<td>Stolpho</td>
<td>123 First St.</td>
<td>456780</td>
<td>STOSAL123FRST456</td>
</tr>
<tr>
<td>Mauricio</td>
<td>Hernandez</td>
<td>321 Second Ave</td>
<td>123456</td>
<td>HERMAU321SCND123</td>
</tr>
</tbody>
</table>
Problems of Blocking

1. **Recall**: Blocking might miss matches because actually matching pairs are not compared as their blocking key values differ.
 - Partition by city: What if customer has moved?
 - Partition by first letter of name: What if already typo in this letter?
 - Possible solution: Use phonetic encoding like Soundex to deal with typos
 - Example: PAUL \(\rightarrow\) P400 and PUAL \(\rightarrow\) P400
 - Phonetic encodings will be covered later in Section on Similarity Measures

2. **Efficiency**: The size of the buckets may vary widely.
 - Reduction ratio depends on value distribution within the data set.
 - Potential solution: Build sub-buckets using a second blocking attribute
 - e.g., hash houses into buckets using zip codes,
 - then hash houses within each bucket using street names

 - Both problems are eased by the Sorted Neighborhood Method.
3.2 The Sorted Neighborhood Method

Idea: Sort tuples so that similar tuples are close to each other. Only compare tuples within a small neighborhood (window).

1. Generate Key
 - E.g.: Social Security Number + First 3 letters of name + ...

2. Sort by Key
 - So that similar tuples end up close to each other.

3. Slide window over sorted tuples
 - match each tuple with only the previous (w-1) tuples, where w is a pre-specified window size.

<table>
<thead>
<tr>
<th>FirstName</th>
<th>Surname</th>
<th>Address</th>
<th>SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mauricio</td>
<td>Hernandez</td>
<td>321 Second Ave</td>
<td>123456</td>
</tr>
<tr>
<td>All</td>
<td>Stolpho</td>
<td>123 First St.</td>
<td>456780</td>
</tr>
<tr>
<td>Sal</td>
<td>Stolpho</td>
<td>123 First St.</td>
<td>456780</td>
</tr>
<tr>
<td>Sal</td>
<td>Stolfo</td>
<td>123 First Street</td>
<td>456789</td>
</tr>
</tbody>
</table>
SNM by ZIP

Window size = 4

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Complexity:
1. Key generation: $O(n)$
2. Sorting: $O(n \cdot \log(n))$
3. Comparisons: $O(n \cdot w)$

54 comparisons
Challenges when applying the SNM

- **Choice of the Blocking Key**
 - SNM assumes that tuples that are likely to match fall within the window.
 - Thus, key should be strongly “discriminative” and bring together tuples that are likely to match, and pushes apart tuples that are not.
 - example keys: social sec, student ID, last name, soundex value of last name.

- **Choice of Window Size**
 - Depends on the types and frequency of the errors/typos in the data.
 - Practical experience: \(w = 20 \) often a good compromise.

- **Workaround: Use Multi-Pass Approach**
 1. Run SNM several times with different keys.
 - Use simple keys and a small \(w \)
 2. Merge sets of matches found in each run.
 - Less efficient, but much more effective than Single-Pass.
4. Evaluation
Precision & Recall

- **Ground Truth** for the evaluation: Manually label a set of pairs as matches or non-matches.
 - True positives (TP): Correctly discovered duplicates
 - False positives (FP): Incorrectly discovered duplicates
 - True negatives (TN): Correctly avoided pairs
 - False negatives (FN): Missed duplicates

- **Precision** = TP / (TP + FP)
 - = TP / declared matches
 - Proportion of found matches that are correct
 - Correctness

- **Recall** = TP / (TP + FN)
 - = TP / all matches
 - Proportion of correct matches that are found
 - Completeness
Precision & Recall

Precision = \frac{True positives}{Declared matches}

Recall = \frac{True positives}{True matches}

F-Measure = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}

Accuracy is not a good measure; true negatives usually dominate overall result.
F-Measure vs. Average of Precision and Recall

Harmonic mean („F-Measure“) emphasizes the importance of small values, whereas arithmetic mean („Average“) is affected more by outliers that are unusually large.

\[z = \frac{1}{2} (x + y) \]

\[z = \frac{2 (x \cdot y)}{(x + y)} \]
From Creating probabilistic databases from duplicated data
Oktie Hassanzadeh · Renée J. Miller (VLDBJ)
Efficiency Measures

- Besides of the quality of similarity measure, the quality of the blocking method is also important.

- Solution 1: Runtime measurements
 - But: Different hardware, difficult repeatability

- Solution 2: Measure how well/poor the blocking method filters the candidates.
 - How many true positives are missed?

- Pairs Completeness
 - \(\frac{TP}{FN + TP} = \text{recall (loss of recall)} \)

- Pairs Quality
 - \(\frac{TP}{TP + TN} = \text{precision} \)
 (matches / all pairs examined)
Evaluating Identity Resolution

- Precision
- Recall
- Efficiency
- Similarity threshold
- Similarity measure
- Partition/window size
5. Similarity Measures – In Detail

Similarity Measures

- Edit-based
 - Levenshtein
 - Damerau-Levenshtein
 - Smith-Waterman
 - Smith-Waterman-Gotoh

- Token-based
 - Words / n-grams
 - Jaccard
 - Dice

- Hybrid
 - Monge-Elkan
 - Cosine Similarity

- Datatype-specific
 - Numerical attributes
 - Dates Times

- Phonetic
 - Geo Coordinates
 - Soundex
 - Kölner Phonetik
 - Metaphone
 - Double Metaphone

- Soft TF-IDF

Hamming

Jaro-Winkler

Jaro

Jaro-Winkler

Damerau-Levenshtein

Levenshtein

Smith-Waterman

Smith-Waterman-Gotoh

Soft TF-IDF
Similarity Measures

- \(\text{sim}(x,y) \)
 - \(x \) and \(y \) can be strings, numbers, dates, geo coordinates, tuples, images, ...

- **Normalized**: \(\text{sim}(x,y) \in [0,1] \)
 - \(\text{sim}(x,y) = 1 \) for exact match
 - \(\text{sim}(x,y) = 0 \) for "completely different" \(x \) and \(y \).
 - \(0 < \text{sim}(x,y) < 1 \) for some approximate similarity

- **Distance function / distance metric**
 - Reflexive: \(\text{dist}(x,x) = 0 \)
 - Positive: \(\text{dist}(x,y) \geq 0 \)
 - Symmetric: \(\text{dist}(x,y) = \text{dist}(y,x) \)
 - Triangular inequation: \(\text{dist}(x,z) \leq \text{dist}(x,y) + \text{dist}(y,z) \)

- \(\text{sim}(x,y) = 1 - \text{dist}(x,y) \) if \(\text{dist}(x,y) \in [0,1] \)
- \(\text{sim}(x,y) = 1/\text{dist}(x,y)+1 \) if \(\text{dist}(x,y) \in [0,\infty] \)
The Tuple Matching Process

1. Gather Data for Matching
2. Normalize Attribute Values
3. Apply Attribute-specific Similarity Measures
4. Combine Similarity Scores
5. Decide Match/Non-Match

But do not forget about the importance of the first two steps!
5.1 Edit-based Similarity Measures

- **Edit-based**
 - Damerau-Levenshtein
 - Levenshtein
 - Smith-Waterman
 - Smith-Waterman-Gotoh

- **Token-based**
 - Jaccard
 - Dice

- **Datatype-specific**
 - Numerical attributes
 - Dates Times

- **Phonetic**
 - Soundex
 - Kölner Phonetik
 - Metaphone
 - Double Metaphone

- **Hybrid**
 - Monge-Elkan
 - Soft TF-IDF

- **Similarity Measures**
 - Hamming
 - Jaro-Winkler
 - Jaro
 - Words / n-grams
 - Geo Coordinates
 - Dates
 - Times
 - Cosine Similarity
Levenshtein Distance

- Measures the dissimilarity of two strings.
- Measures the *minimum number of edits* needed to transform one string into the other.

Allowed edit operations:
- insert a character into the string
- delete a character from the string
- replace one character with a different character

Examples:
- levensthein('Table', 'Cable') = 1 (1 Substitution)
- levensthein('Table', 'able') = 1 (1 Deletion)
Levenshtein Similarity

\[sim_{\text{Levenshtein}} = 1 - \frac{\text{Levenshtein Distance}}{\max(|s_1|, |s_2|)} \]

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(s_2)</th>
<th>\text{Levenshtein Distance}</th>
<th>(sim_{\text{Levenshtein}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones</td>
<td>Johnson</td>
<td>4</td>
<td>0.43</td>
</tr>
<tr>
<td>Paul</td>
<td>Pual</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Paul Jones</td>
<td>Jones, Paul</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>
Levenshtein Discussion

- Good general purpose string similarity measure.
 - Can deal with typos.
 - Does not work if parts of string (words) have different order
 - ‘Firstname Surname’ vs. ‘Surname, Firstname’
 - Other similarity measures are optimized for specific strings like names.
- Has Quadratic Complexity
 - Levenshtein distance is calculated using dynamic programming
 - Time Complexity $O(|x| \cdot |y|)$
- Alternative Cost Models
 - Insert, delete cost 1.0 but replace 0.5
 - change in string length is punished, e.g. for zip codes
 - Character based cost model
 - OCR ($m \approx n$, $1 \approx l$) or keyboard ($a \approx s$) or brain ($6 \approx 9$)
Jaro Similarity

- Specifically designed for matching names at US Census Bureau.
- Applies heuristics that empirically proofed to work for names.
 - first names, surnames, street/town names, country names

1. Search for matching characters within a specific distance
 - m : number of matching characters
 - Search range for matching characters: $\frac{\max(|x|,|y|)}{2} - 1$
 - Division by 2 as names often have two parts.

2. Look for swapped adjacent characters
 - transposition: ‘pe’ vs. ‘ep’
 - t : number of transpositions

$$sim_{jaro} = \frac{1}{3} \left(\frac{m}{|x|} + \frac{m}{|y|} + \frac{m - t}{m} \right)$$
Jaro Similarity – Example

\[sim_{jaro} = \frac{1}{3} \left(\frac{m}{|x|} + \frac{m}{|y|} + \frac{m - t}{m} \right) \]

\[m = 4 \quad t = 1 \]

\[sim_{jaro} = \frac{1}{3} \cdot \left(\frac{4}{4} + \frac{4}{4} + \frac{4 - 1}{4} \right) \approx 0.92 \]

\[m = 4 \quad t = 0 \]

\[sim_{jaro} = \frac{1}{3} \cdot \left(\frac{4}{5} + \frac{4}{7} + \frac{4 - 0}{4} \right) \approx 0.79 \]
Winkler Similarity

- Intuition: Similarity of first few letters is most important.
 - Less typos in first letters
 - Dealing with abbreviations
 - ‘Apple Corp.’ vs. ‘Apple Cooperation’
 - ‘Bizer, Christian’ vs. ‘Bizer, Chris’
- Let p be the length of the common prefix of x and y.

\[
sim_{\text{winkler}}(x, y) = \sim_{\text{jarro}}(x, y) + (1 - \sim_{\text{jarro}}(x, y)) \frac{p}{10}
\]
 - $= 1$ if common prefix is ≥ 10
Jaro-Winkler Similarity

- Extension of Jaro similarity, considering a common prefix

\[
\text{if } sim_{jaro} \leq 0.7 : sim_{jarowinkler} = sim_{jaro}
\]

\[
\text{otherwise : } sim_{jarowinkler} = sim_{jaro} + l \cdot p \cdot (1 - sim_{jaro})
\]

- \(l\) : length of common prefix up to a maximum of 4 characters

- \(p\) : constant scaling factor for how much the score is adjusted upwards for having common prefixes (typically \(p=0.1\))

- Examples:

\[
s_1 = \text{PAUL} \quad s_2 = \text{PUAL} \\
sim_{jaro} = 0.92 \\
l = 1 \\
p = 0.1 \\
sim_{jarowinkler} = 0.92 + 1 \cdot 0.1 \cdot (1 - 0.92) = 0.928
\]

\[
s_1 = \text{JONES} \quad s_2 = \text{JOHNSON} \\
sim_{jaro} = 0.79 \\
l = 2 \\
p = 0.1 \\
sim_{jarowinkler} = 0.79 + 2 \cdot 0.1 \cdot (1 - 0.79) = 0.832
\]
5.2 Token-based Similarity Measures

- Edit-based
 - Levenshtein
 - Damerau-Levenshtein
 - Smith-Waterman
 - Smith-Waterman-Gotoh
- Jaro-Winkler
 - Jaro
 - Levenshtein
 - Hamming
- Words / n-grams
 - Soft TF-IDF
 - Monge-Elkan
- Phonetic
 - Soundex
 - Kölner Phonetik
 - Metaphone
 - Double Metaphone
- Hybrid
 - Jaccard
 - Dice
 - Cosine Similarity
- Datatype-specific
 - Numerical attributes
 - Dates Times
 - Geo Coordinates
Token-based Similarity

Token-based measures deal with the different order to words in longer strings.

- ‘Chris Bizer’ and ‘Bizer, Chris’ do not look similar to edit-based measures
- ‘Processor: Intel Xeon E5620’ vs. ‘Intel Xeon E5620 processor’ vs. ‘Intel Xeon E5620’
- Tokenization
 - Forming words from sequence of characters
- General idea: Separate string into tokens using some separator
 - Possible separators: Space, hyphen, punctuation, special characters
- Alternative: Split string into short substrings
 - n-grams: next slide
\(n \)-grams (aka q-grams)

- Split string into short substrings of length \(n \).
 - Sliding window over string
 - \(n=2 \): Bigrams
 - \(n=3 \): Trigrams
 - Variation: Pad with \(n-1 \) special characters
 - Emphasizes beginning and end of string
 - Variation: Include positional information to weight similarities

- Goals:
 1. Deal with typos and different order of words
 2. Reduce the time complexity compared to Levenshtein

<table>
<thead>
<tr>
<th>String</th>
<th>Bigrams</th>
<th>Padded bigrams</th>
<th>Positional bigrams</th>
<th>Trigrams</th>
</tr>
</thead>
<tbody>
<tr>
<td>gail</td>
<td>ga, ai, il</td>
<td>○g, ga, ai, il, l⊗</td>
<td>(ga,1), (ai,2), (il,3)</td>
<td>gai, ail</td>
</tr>
<tr>
<td>gayle</td>
<td>ga, ay, yl, le</td>
<td>○g, ga, ay, yl, le, e⊗</td>
<td>(ga,1), (ay,2), (yl,3), (le,4)</td>
<td>gay, ayl, yle</td>
</tr>
<tr>
<td>peter</td>
<td>pe, et, te, er</td>
<td>○p, pe, et, te, er, r⊗</td>
<td>(pe,1), (et,2), (te,3), (er,4)</td>
<td>pet, ete, ter</td>
</tr>
<tr>
<td>pedro</td>
<td>pe, ed, dr, ro</td>
<td>○p, pe, ed, dr, ro, o⊗</td>
<td>(pe,1), (ed,2), (dr,3), (ro,4)</td>
<td>ped, edr, dro</td>
</tr>
</tbody>
</table>
Token-based Similarity Measures

- Can be applied to words or n-grams

- **Overlap coefficient:** $\text{sim}_{\text{overlap}}(x, y) = \frac{|\text{tok}(x) \cap \text{tok}(y)|}{\min(|\text{tok}(x)|, |\text{tok}(y)|)}$

- **Jaccard coefficient:**

 $$\text{sim}_{\text{jaccard}}(x, y) = \frac{|\text{tok}(x) \cap \text{tok}(y)|}{|\text{tok}(x)| + |\text{tok}(y)| - |\text{tok}(x) \cap \text{tok}(y)|} = \frac{|\text{tok}(x) \cap \text{tok}(y)|}{|\text{tok}(x) \cup \text{tok}(y)|}$$

- **Dice's coefficient:** $\text{sim}_{\text{dice}}(x, y) = \frac{2 \cdot |\text{tok}(x) \cap \text{tok}(y)|}{|\text{tok}(x)| + |\text{tok}(y)|}$

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>Jaccard</th>
<th>Dice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones</td>
<td>Johnson</td>
<td>0.17</td>
<td>0.29</td>
</tr>
<tr>
<td>Paul</td>
<td>Pual</td>
<td>0.33</td>
<td>0.40</td>
</tr>
<tr>
<td>Paul Jones</td>
<td>Jones, Paul</td>
<td>0.77</td>
<td>0.87</td>
</tr>
</tbody>
</table>
5.3 Phonetic Similarity Measures

- Edit-based
 - Damerau-Levenshtein
 - Levenshtein
 - Smith-Waterman
 - Smith-Waterman-Gotoh

- Token-based
 - Jaccard
 - Dice
 - Words / n-grams
 - Cosine Similarity

- Hybrid
 - Monge-Elkan
 - Soft TF-IDF

- Datatype-specific
 - Numerical attributes
 - Dates
 - Times
 - Geo Coordinates

- Phonetic
 - Soundex
 - Kölner Phonetik
 - Metaphone
 - Double Metaphone

- Soft TF-IDF
 - MetaEphe
Soundex

- Soundex codes a last name based on the way a last name sounds.
- Algorithm:
 1. Retain first letter of the name and drop all other occurrences of A, E, H, I, O, U, W, Y
 2. Replace consonants with digits
 3. Two adjacent letters with the same number are coded as a single number
 4. Continue until you have one letter and three numbers. If you run out of letters, pad with 0s.
- If a surname has a prefix, such as Van, Con, De, Di, La, or Le, code both with and without the prefix.
- Rules have been generated empirically.

<table>
<thead>
<tr>
<th>Digit</th>
<th>Letters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B, F, P, V</td>
</tr>
<tr>
<td>2</td>
<td>C, G, J, K, Q, S, X, Z</td>
</tr>
<tr>
<td>3</td>
<td>D, T</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>M, N</td>
</tr>
<tr>
<td>6</td>
<td>R</td>
</tr>
</tbody>
</table>

- Example
 - PAUL: P400
 - PUAL: P400
 - JONES: J520
 - JOHNSON: J525

J525 also: Jenkins, Jansen, Jameson
Soundex on WolframAlpha

Input interpretation:

Soundex Levenshtein

Soundex code:

L152

Soundex-close English words:

Livingstone | lebensraum | Livingston | lovemaking

Computed by Wolfram Mathematica
Like Soundex, but specialized for German last names

- Letters get different codes based on the context
- Code length is not restricted
- Multiple occurrences of the same code and „0“ are removed

Examples:
- PAUL: 15
- PUAL: 15
- JONES: 68
- JOHNSON: 686

<table>
<thead>
<tr>
<th>Letter</th>
<th>Context</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, E, I, J, O, U, Y</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>not before H</td>
<td></td>
</tr>
<tr>
<td>D, T</td>
<td>not before C, S, Z</td>
<td>2</td>
</tr>
<tr>
<td>F, V, W</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>P</td>
<td>before H</td>
<td></td>
</tr>
<tr>
<td>G, K, Q</td>
<td>in the initial sound before A, H, K, L, O, Q, R, U, X</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>before A, H, K, O, Q, U, X but not after S, Z</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>not after C, K, Q</td>
<td>48</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>M, N</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>S, Z</td>
<td>after S, Z</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>in the initial sound, but not before A, H, K, L, O, Q, R, U, X</td>
<td>8</td>
</tr>
<tr>
<td>D, T</td>
<td>before C, S, Z</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>after C, K, Q</td>
<td></td>
</tr>
</tbody>
</table>
5.4 Hybrid Similarity Measures

- **Edit-based**
 - Damerau-Levenshtein
 - Levenshtein
 - Smith-Waterman
 - Smith-Waterman-Gotoh

- **Token-based**
 - Jaccard
 - Dice
 - Word-based
 - Cosine Similarity

- **Datatype-specific**
 - Numerical attributes
 - Dates/Times
 - Geo Coordinates

- **Phonetic**
 - Soft TF-IDF
 - Monge-Elkan
 - Cosine Similarity

- **Hybrid**
 - Kölner Phonetik
 - Metaphone
 - Double Metaphone
Monge-Elkan Similarity

- Hybrid: Token-based and internal similarity function for tokens
 - Find best match for each token
- Goal: Deal with typos and different order of words.

\[
sim_{MongeElkan}(x, y) = \frac{1}{|x|} \sum_{i=1}^{|x|} \max_{j=1,|y|} \text{sim}'(x[i], y[j])
\]
 - \(|x|\) is number of tokens in \(x\)
 - \(\text{sim}'\) is internal similarity function (e.g. Levenshtein or Jaro)
- If strings contain just one token each
 - \(\sim_{MongeElkan}(x, y) = \text{sim}'(x, y)\)
- Complexity: Quadratic in number of tokens.
Monge-Elkan – Example

\[\text{sim}_{\text{MongeElkan}}(x, y) = \frac{1}{|x|} \sum_{i=1}^{|x|} \max_{j=1}^{|y|} \text{sim}'(x[i], y[j]) \]

- Peter Christen vs. Christian Pedro
 - \(\text{sim}_{\text{jaro}}(\text{peter, christian}) = 0.3741 \)
 - \(\text{sim}_{\text{jaro}}(\text{peter, pedro}) = 0.7333 \)
 - \(\text{sim}_{\text{jaro}}(\text{christen, christian}) = 0.8843 \)
 - \(\text{sim}_{\text{jaro}}(\text{christen, pedro}) = 0.4417 \)

- \(\text{sim}_{\text{MongeElkan}}('\text{peter christen}', '\text{christian pedro}') = \)
 \[\frac{1}{2} (0.7333 + 0.8843) = 0.8088 \]
Extended Jaccard Similarity

Standard Jaccard

\[\text{sim}_{\text{jaccard}}(x, y) = \frac{|\text{tok}(x) \cap \text{tok}(y)|}{|\text{tok}(x)| + |\text{tok}(y)| - |\text{tok}(x) \cap \text{tok}(y)|} = \frac{|\text{tok}(x) \cap \text{tok}(y)|}{|\text{tok}(x) \cup \text{tok}(y)|} \]

- If strings contain multiple words, choose words as tokens.

Extended Jaccard

- Use internal similarity function (e.g. Levenshtein or Jaro) to calculate similarity between all pairs of tokens.
- Consider all tokens as shared if similarity is above threshold.
- Shared tokens: \(S = \{(x_i, y_j) | x_i \in \text{tok}(x) \land y_j \in \text{tok}(y) : \text{sim}'(x_i, y_j) \geq \theta \} \)
- Unique tokens: \(U_{\text{tok}(x)} = \{x_i | x_i \in \text{tok}(x) \land y_j \in \text{tok}(y) \land (x_i, y_j) \notin S \} \)

\[\text{sim}_{\text{jaccard_ext}}(x, y) = \frac{|S|}{|S| + |U_{\text{tok}(x)}| + |U_{\text{tok}(y)}|} \]
5.5 Datatype-specific Similarity Measures

- **Edit-based**
 - Levenshtein
 - Damerau-Levenshtein
 - Smith-Waterman
 - Smith-Waterman-Gotoh

- **Token-based**
 - Jaro
 - Jaro-Winkler
 - Words / n-grams
 - Jaccard
 - Dice
 - Cosine Similarity
 - Monge-Elkan
 - Soft TF-IDF

- **Hybrid**
 - Smith-Waterman-Gotoh
 - Monge-Elkan
 - Soft TF-IDF

- **Phonetic**
 - Hamming
 - Jaro-Winkler
 - Jaccard
 - Dice
 - Cosine Similarity
 - Monge-Elkan
 - Soft TF-IDF

- **Datatype-specific**
 - Numerical attributes
 - Dates
 - Times
 - Geo Coordinates
 - Soundex
 - Kölner Phonetik
 - Metaphone
 - Double Metaphone
Numerical Comparison

Approach 1: Tolerate absolute difference between values, independently of absolute values.

\[
\text{sim}_{\text{num.abs}}(n, m) = \begin{cases}
1 - \frac{|n-m|}{d_{\text{max}}} & \text{if } |n - m| < d_{\text{max}} \\
0 & \text{else}
\end{cases}
\]

- Linear extrapolation between 0 and \(d_{\text{max}}\)
- \(d_{\text{max}}\) = maximal interval in which numbers should be considered similar

Example:
- \(d_{\text{max}} = $1,000\)
- \(\text{sim}_{\text{num.abs}}(2,000, 2,500) = 1 - \frac{500}{1,000} = 0.5\)
- \(\text{sim}_{\text{num.abs}}(200,000, 200,500) = 1 - \frac{500}{1,000} = 0.5\)

Approach 2: Tolerate difference up to a certain percentage of the absolute values.

\[
\text{sim}_{\text{num.perc}}(n, m) = \begin{cases}
1 - \frac{pc}{p_{c_{\text{max}}}} & \text{if } pc < p_{c_{\text{max}}} \\
0 & \text{else}
\end{cases}
\]

- \(pc = \frac{|n-m|}{\text{max}(|n||m|)} \cdot 100\) is percentage difference
- \(p_{c_{\text{max}}} = 33\%\) is the maximal percentage that should be tolerated
- \(\text{sim}_{\text{num.perc}}(2,000, 2,500) = 1 - \frac{20}{33} = 0.394\) because \(pc = \frac{|2,000-2,500|}{2,500} \cdot 100 = 20\%
- \(\text{sim}_{\text{num.perc}}(200,000, 200,500) = 1 - \frac{0.25}{33} = 0.993\) because \(pc = \frac{500}{200,500} \cdot 100 = 0.25\%\)
Time and Space Comparisons

- Dates
 - Convert dates into days after year 0 → integer
 - Afterwards use $\text{sim}_{\text{num abs}}$

- Geographic Coordinates
 - Distance is measured along the surface of the Earth in kilometers or miles.
 - Compute distance based on geographic projection of coordinates.
 - Java package for calculating geographic distances: Geographiclib
4.6 Implementations of Similarity Measures

- **SecondString Library**
 - Java package that we will use in the exercise
 - Supports all basic string comparisons
 - MongeElkan, SoftTFIDF
 - http://sourceforge.net/projects/secondstring/

- **SimMetrics Library**
 - Alternative Java package
 - Supports all basic string comparisons
6. Learning Matching Models

- **Problem:**
 It is hard for humans to write good matching rules, as this requires a lot of knowledge about the data set and matching techniques.
 - What kind of typos and other errors are contained in the data?
 - Which string similarity measure fits which attribute?
 - How to set similarity thresholds?
 - How to weight different attributes?

- **Solution:**
 1. Manually label a certain amount of pairs as matches and non-matches.
 2. Use machine learning to generate a matching model from the training data.

- **Advantage:**
 - The human does what she is good at: Understand the data.
 - The computer does what it is good at: Learn detailed model from examples.
Learning a Matching Model can be seen as Classification Problem

Workflow: Learn a matching model M from training data, then apply M to match new tuple pairs.

Training Set

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Large</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Medium</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Small</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Medium</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Large</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Medium</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Large</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Small</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Medium</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Small</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Unseen Records

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>No</td>
<td>Small</td>
<td>55K</td>
<td>?</td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Medium</td>
<td>80K</td>
<td>?</td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>Large</td>
<td>110K</td>
<td>?</td>
</tr>
<tr>
<td>14</td>
<td>No</td>
<td>Small</td>
<td>95K</td>
<td>?</td>
</tr>
<tr>
<td>15</td>
<td>No</td>
<td>Large</td>
<td>67K</td>
<td>?</td>
</tr>
</tbody>
</table>

Classification Techniques: See Lecture Data Mining I
Training Data and Feature Generation

- Training data: \(T = \{(x_1,y_1,l_1), \ldots, (x_n,y_n,l_n)\} \), where
 - each \((x_i,y_i)\) is a tuple pair and
 - \(l_i\) is a label: “yes” if \(x_i\) matches \(y_i\) and “no” otherwise

- Feature Generation
 - define a set of features \(f_1, \ldots, f_m\), each quantifying one aspect of the domain judged possibly relevant to matching the tuples
 - Feature = Similarity measure applied to attribute pair
 - Feature Value = Similarity score
 - If you want the learning algorithm to decides which similarity metric fits best for a specific attribute pair, you generate multiple features for the pair.
 - Levenshtein(Name1, Name2)
 - Jaro(Name1, Name2)
 - Jaro-Windler(Name1, Name2)
Learn Matching Model M

1. convert each training example \((x_i, y_i, l_i)\) in T to a pair \((\langle f_1(x_i, y_i), \ldots, f_m(x_i, y_i)\rangle, c_i)\)
 - \(v_i = \langle f_1(x_i, y_i), \ldots, f_m(x_i, y_i)\rangle\) is a feature vector that encodes \((x_i, y_i)\) in terms of the features (list of similarity values)
 - \(c_i\) is an appropriately transformed version of label \(l_i\) (e.g., yes/no or 1/0, depending on what matching model we want to learn)
 - thus T is transformed into \(T' = \{(v_1, c_1), \ldots, (v_n, c_n)\}\)

2. apply a learning algorithm to \(T'\) to learn a matching model M
 - e.g. linear regression, decision trees, SVMs, …
Example: Learning a Linearly Weighted Rule

\[\langle a_1 = (\text{Mike Williams}, (425) 247 4893, \text{Seattle, WA}), b_1 = (\text{M. Williams}, 247 4893, \text{Redmond, WA}), \text{yes} \rangle \]
\[\langle a_2 = (\text{Richard Pike}, (414) 256 1257, \text{Milwaukee, WI}), b_2 = (\text{R. Pike}, 256 1237, \text{Milwaukee, WI}), \text{yes} \rangle \]
\[\langle a_3 = (\text{Jane McCain}, (206) 111 4215, \text{Renton, WA}), b_3 = (\text{J. M. McCain}, 112 5200, \text{Renton, WA}), \text{no} \rangle \]

- \(s_1 \) and \(s_2 \) use Jaro-Winkler and edit distance
- \(s_3 \) uses edit distance (ignoring area code of a)
- \(s_4 \) and \(s_5 \) return 1 if exact match, 0 otherwise
- \(s_6 \) encodes a heuristic constraint
Example: Learning a Linearly Weighted Rule

- Goal: learn rule $s(a,b) = \sum_{i=1}^{6} \alpha_i s_i(a, b)$
- Perform a least-squares linear regression on training data

$$v_1 = [s_1(a_1,b_1), s_2(a_1,b_1), s_3(a_1,b_1), s_4(a_1,b_1), s_5(a_1,b_1), s_6(a_1,b_1)], 1>$$
$$v_2 = [s_1(a_2,b_2), s_2(a_2,b_2), s_3(a_2,b_2), s_4(a_2,b_2), s_5(a_2,b_2), s_6(a_2,b_2)], 1>$$
$$v_3 = [s_1(a_3,b_3), s_2(a_3,b_3), s_3(a_3,b_3), s_4(a_3,b_3), s_5(a_3,b_3), s_6(a_3,b_3)], 0>$$

...to find weights α_i that minimizes the squared error

$$\sum_{i=1}^{3} (c_i - \sum_{j=1}^{6} \alpha_j s_j(v_i))^2$$
Example: Learning a Decision Tree

Positive:
The decision tree learning algorithm automatically selects the features that are useful.
Discussion Learning-based Approach

- **Pros compared to writing rules by hand**
 - you must manually decide if a particular feature is useful ➔ labor intensive and limit the number of features we can consider.
 - learning-based approaches can automatically examine a large number of features.

- **Cons**
 - you need to label training examples.
 - you don’t know which examples matter to the algorithm and thus might label an unnecessary large number of examples in order to cover all relevant corner-cases.

- **Solution**
 - Use Active Learning in order to let the algorithm decide which examples matter.
 - Practical experience: F1 > 0.95 after labeling less 10-50 pairs.

Learning Linkage Rules within the Silk Workbench

1. Labeling Pairs of Movies

![Image of DBpedia and LinkedMDB sources with scores and correct labels]

1. Labeling Pairs of Movies

2. Learned Linkage Rule

![Image of linkage rule with parameters and operators]

http://wifo5-03.informatik.uni-mannheim.de/bizer/silk/
References

- All Aspects of Identity Resolution
 - Peter Christen: Data Matching. Springer 2012.

- Blocking

- Similarity Measures