Web Mining

Introduction and Course Outline

Prof. Dr. Christian Bizer
Prof. Dr. Simone Ponzetto
Dr. Stefano Faralli
Oliver Lehmberg

FFS 2016
Hallo

- Prof. Dr. Christian Bizer
- Professor for Information Systems V
- Research Interests:
 - Data and Web Mining
 - Web Data Integration
 - Linked Data Technologies
- Room: B6, 26 - B1.15
- Consultation: Wednesday, 13:30-14:30
- eMail: chris@informatik.uni-mannheim.de

- Will teach the theory blocks on Web Usage Mining and Web Structure Mining
Hallo

- Dipl.-Wi.-Inf. Oliver Lehmberg
- Graduate Research Associate
- Research Interests:
 - Data and Web Mining
 - Network Analysis
 - Web Data Integration
- Room: B6, 26, C 1.07
- eMail: oli@informatik.uni-mannheim.de

- Will teach the exercise on Recommender Systems and Social Network Analysis and coaches the student projects
Hallo

- Prof. Dr. Simone Ponzetto
- Professor for Information Systems III
- Research Interests:
 - Knowledge Acquisition
 - Natural Language Processing
 - Text Mining Applications
- Room: B6, 26 - B1.14
- Consultation: Friday, 11:30-12:30
- eMail: simone@informatik.uni-mannheim.de

- Will teach the theory block on Web Content Mining
Hallo

- Dr. Stefano Faralli
- Postdoctoral Researcher
- Research Interests:
 - Natural Language Processing
 - Word Sense Disambiguation
 - Ontology Learning
- Room: B6, 26, C 1.11
- eMail: stefano@informatik.uni-mannheim.de

Will teach the exercise on Web Content Mining and coaches the student projects
1. Course Organization

2. The World Wide Web
 1. The Classic Document Web
 2. The Web of Data
 3. Web 2.0 Applications

3. What is Web Mining?
 1. Web Usage Mining
 2. Web Structure Mining
 3. Web Content Mining

4. The Web Mining Process
1. Course Organization
Course Organization

- **Lecture**
 - introduces the principle methods of Web Mining
 - discusses how to evaluate the learned models
 - presents examples of Web Mining applications

- **Exercise**
 - students experiment with given tools and given data sets

- **Project Work**
 - student teams realize a Web Mining project
 - teams may choose their own data sets and tasks
 (in addition, we will propose some suitable data sets and tasks)
 - write summary about the project, present the project results

- **Final exam**
 - 50 % written exam
 - 50 % project work
Course Organization

- **Course Webpage**
 - contains general information and lecture slides

- **Exercise Material**
 - ILIAS eLearning System, https://ilias.uni-mannheim.de/

- **Time and Location**
 - Thursday, 15:30 to 17:00, Room: B 6, A104
 - Friday, 12:00 to 13:30, Room: B 6, A104
Waiting List

- This year, we have 11 people on the waiting list
 - if you decide not to attend, please leave ILIAS group this week
 - so others can have your place

- Policy: Two strikes out
 - you have to attend this lecture or the lecture next Thursday (25.02.2016)
 - If you are not attending, you will be deleted from the participants list
 - Please sign now next to your name on the participants list

- If you are on the waiting list
 - you may get assigned a place next week
 - The waiting list is cleared after this semester (i.e., no priority for next semester!)
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic Thursday</th>
<th>Topic Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.02.2016</td>
<td>Lecture: Introduction to Web Mining</td>
<td>Lecture: Web Usage Mining</td>
</tr>
<tr>
<td>25.02.2016</td>
<td>Lecture: Recommender Systems</td>
<td>Exercise: Recommender Systems</td>
</tr>
<tr>
<td>03.03.2016</td>
<td>Exercise: Recommender Systems</td>
<td>Lecture: Web Structure Mining</td>
</tr>
<tr>
<td>10.03.2016</td>
<td>Lecture: Social Network Analysis</td>
<td>Lecture: Introduction to Pajek</td>
</tr>
<tr>
<td>17.03.2016</td>
<td>Exercise: Social Network Analysis</td>
<td>Exercise: Social Network Analysis</td>
</tr>
<tr>
<td></td>
<td>- Easter break -</td>
<td></td>
</tr>
<tr>
<td>07.04.2016</td>
<td>Lecture: Web Content Mining: Sentiment analysis</td>
<td>Exercise: Sentiment Analysis</td>
</tr>
<tr>
<td>21.04.2016</td>
<td>Introduction to Student Projects</td>
<td>Prepararation of Project Outlines</td>
</tr>
<tr>
<td>28.04.2016</td>
<td>Feedback about Project Oulines</td>
<td>Project work</td>
</tr>
<tr>
<td>05.05.2016</td>
<td>Project work</td>
<td>Coaching</td>
</tr>
<tr>
<td>12.05.2016</td>
<td>Project work</td>
<td>Coaching</td>
</tr>
<tr>
<td>19.05.2016</td>
<td>Project work</td>
<td>Coaching</td>
</tr>
<tr>
<td>26.05.2016</td>
<td>Project work</td>
<td>Coaching</td>
</tr>
<tr>
<td>02.06.2016</td>
<td>Presentation of project results</td>
<td>Presentation of project results</td>
</tr>
<tr>
<td>16.06.2016</td>
<td>Final written exam (likely date)</td>
<td></td>
</tr>
</tbody>
</table>
Literature

Software

- Open-source machine learning library which can be deployed on a single machine as well as on Hadoop and Spark clusters
- Includes various recommendation algorithms
- Download: http://mahout.apache.org/
Software

- Tool for the analysis and visualization of large networks
- Download: http://mrvar.fdv.uni-lj.si/pajek/
Software

- Stanford CoreNLP: A Suite of Core NLP Tools
- Download: http://stanfordnlp.github.io/CoreNLP/

Named Entity Recognition:

```
1. President Xi Jinping of China, on his first state visit to the United States, showed off his familiarity with American history and pop culture on Tuesday night.
```

Coreference:

```
1. President Xi Jinping of China, on his first state visit to the United States, showed off his familiarity with American history and pop culture on Tuesday night.
```

Basic Dependencies:
Software

- Powerful data mining suite
- Download: https://rapidminer.com/
- We can provide you with a key for the current version 7
Questions?
2. The World Wide Web

The Web is a global information space build on a set of technical standards for the identification, retrieval and representation of content.

- **Uniform Resource Identifiers (URIs):** Globally unique identification of Web resources.

- **Hypertext Transfer Protokoll (HTTP):** Protocol for interacting with Web resources.

- **Content Formats:** HTML, XML, RDF, ...

- **The Web was invented in 1989 at CERN by Tim Berners-Lee**

- **Architectural Principles of the Web**

Topology of the Web Today

The Web of Data

The Classic Document Web

Web 2.0 Applications
2.1 The Classic Document Web

Global information space consisting of interlinked Web documents (text, images, multimedia).

The Size of the Web

- **Overall Size**: 1 trillion URLs on the Web at once
 - announced by Google in 2008
 - http://googleblog.blogspot.de/2008/07/we-knew-web-was-big.html

- **Indexed Web**: approx. 50 billion pages
 - estimate based on search engine hit counts for popular words
 - Example: The word „the“ appears in 67% of all English pages and has 25.2 billion hits on Google
The link distribution follows (kind of) a power law.

- A small number of pages is target of many links.
- A large number of pages is target of only a few or no links.

Classic Paper:

- AltaVista crawl with over 200 million pages and 1.5 billion links
- Conclusion: Log-log scale plot shows power-law.
In-Degree Distribution

Broder et al. (2000)
Power law with exponent 2.1
(200 million pages and 1.5 billion links from Altavista crawl 2000)

WDC Hyperlink Graph (2012)
Best power law exponent 2.24
(3 billion pages and 128 billion links from Common Crawl 2012)

Too small number of high in-degree pages for power law
Four mayor components (Border at al., WWW2000)

- **Central Strongly Connected Component (SCC)**
 - pages that can reach one another along directed links
 - about 30% of the Web (normal pages)

- **IN Group**
 - can reach SCC but cannot be reached from it
 - about 20% (maybe new pages or boring ones)

- **OUT Group**
 - can be reached from SCC but cannot reach it
 - about 20% (maybe company pages that don’t link)

- **Tendrils**
 - cannot reach SCC and cannot be reached by it
 - about 20%

- **Unconnected**
 - about 10%

Probability of path between nodes is 24%
A strongly connected component (SCC) in a directed graph is a subset of the nodes such that:

1. every node in the subset has a path to every other node
2. the subset is not part of some larger set with the property that every node can reach every other.
Largest Strongly Connected Component

Largest SCC

- **Broder, 2000:**
 - 27.7%

- **WDC, 2012:**
 - 51.3 %

→ Factor 1.8 larger

→ Also, factor 4.9 more links/page

→ The Web has become denser.

- SCC calculated using a machine with 1 TB RAM.
Hands-on: Accessing the Document Web for Mining

1. Crawl the Web Yourself
 - See Bing Liu: Web Data Mining, Chapter 8.
 - Small focused crawls
 - Single-machine Java library: Crawler4j
 - Large-scale crawls
 - Apache Nutch (runs on hadoop clusters)

2. Use Existing Crawls
 1. Common Crawl: Non-profit organization which provides large web crawls on Amazon S3 for free.
 - 2012 CC Corpus: 3.0 billion HTML pages (48 Terabyte compressed)
 - 2014 CC Corpus: 2.0 billion HTML pages (102 Terabyte uncompressed)
 2. ClueWeb 2012 Crawl: 733 million English HTML pages
 3. Internet Archive 2011: 2.7 billion URIs (80 Terabyte)
2.2. The Web of Data

More and more Websites

- semantically markup the content of their HTML pages
- publish structured data in addition to HTML pages

Microformats

Linked Data

Microdata

RDFa
Microformats

- Microformat effort dates back to 2003
- Small set of fixed formats
 - hcard: people, companies, organizations, and places
 - XFN: relationships between people
 - hCalendar: calendaring and events
 - hListing: small-ads; classifieds
 - hReview: reviews of products, businesses, events
- Shortcoming of Microformats
 - can not represent any kind of data.
- indexed by Google and Yahoo since 2009
RDFa

- Serialization format for embedding RDF data into HTML pages
- Proposed in 2004, W3C Recommendation in 2008
- Can be used together with any vocabulary
- Can assign URIs as global primary keys to entities

```xml
<html xmlns="http://www.w3.org/1999/xhtml"
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
     xmlns:foaf="http://xmlns.com/foaf/0.1/">
  ...
  <div about="http://example.com/Peter" typeof="foaf:Person">
    <span property="foaf:name">Peter Smith</span> knows
  </div>
  ...
</html>
```
Open Graph Protocol

- allows site owners to determine how entities are described in Facebook
- relies on RDFa for encoding data in HTML pages
- available since April 2010
Microdata

- alternative technique for embedding structured data
- proposed in 2009 by WHATWG as part of HTML5 work
- tries to be simpler than RDFa (5 new attributes instead of 8)
- W3C currently tries to reconcile the two alternative proposals

```html
1 <div itemscope itemtype="http://schema.org/Person" itemid="http://example.com/Peter">
2   <span itemprop="name">Peter Smith</span>
3   <a href="http://example.com/Paula" itemprop="knows">Paula Jones</a>
4 </div>
```
- ask site owners to embed data to enrich search results.
- **200+ Types:** Event, Organization, Person, Place, Product, Review
- **Encoding:** Microdata or alternatively RDFa
Usage of Schema.org Data @ Google

Data snippets within search results

Gramercy Tavern - Flatiron - New York, NY | Yelp
www.yelp.com › Restaurants › American (New)
★★★★★ Rating: 4.6 - 1,288 reviews - Price range: $$$$
Jeff C and I were in New York for vacation, and I wanted to treat him to a nice dinner for
..... Gramercy Tavern is certainly a legendary NY dining establishment.

Gramercy Tavern Restaurant - New York, NY | OpenTable
www.opentable.com › ... › Gramercy restaurants
★★★★★ Rating: 4.7 - 508 reviews - Price range: $50 and over
Book now at Gramercy Tavern in New York, explore menu, see photos and read 508
reviews: "The menu was so limited but it was worth trying, food was deli...

Data snippets within info boxes

The Black Keys

Band
The Black Keys is an American rock duo formed in Akron, Ohio in 2001.
The group consists of Dan Auerbach and Patrick Carney. Wikipedia

Origin: Akron, Ohio, United States
Members: Dan Auerbach, Patrick Carney
Record labels: Fat Possum Records, Nonesuch Records, V2 Records,
Alive Naturalsound Records
Awards: Grammy Award for Best Rock Album, more

Upcoming events

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 20 Fri</td>
<td>The Black Keys</td>
<td>Neuhausen ob Eck (near you)</td>
</tr>
<tr>
<td>May 16 Fri</td>
<td>The Black Keys</td>
<td>Gulf Shores, AL</td>
</tr>
<tr>
<td>Jun 22 Sun</td>
<td>The Black Keys</td>
<td>Scheelsel</td>
</tr>
</tbody>
</table>
Microformat, Microdata, RDFa Deployment

- **WebDataCommons.org Project**
 - extracts all Microformat, Microdata, RDFa data from the Common Crawl
 - provides the extracted data for download

- **Two extractions runs**
 - 2012 CC Corpus: 3.0 billion HTML pages \rightarrow 7.3 billion RDF triples
 - 2013 CC Corpus: 2.2 billion HTML pages \rightarrow 17.2 billion RDF triples
 - 2014 CC Corpus: 2.0 billion HTML pages \rightarrow 20.4 billion RDF triples

- **uses 100 machines on Amazon EC2**
 - approx. 3000 machine/hours
 - (spot instances of type c3.xlarge) \rightarrow 550 Euro

- **http://www.webdatacommons.org/structureddata/**
Overall Adoption 2014

620 million HTML pages out of the 2 billion pages provide semantic annotations (30%).

2.72 million pay-level-domains (PLDs) out of the 15.68 million pay-level-domains covered by the crawl provide annotations (17%).

Google, 2014*:
5 million websites provide Schema.org data.

* Guha in LDOW2014 Keynote
Top Classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Instances #</th>
<th>PLDs</th>
<th>%</th>
<th>PLDs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 schema:WebPage</td>
<td>51.757.000</td>
<td>148,893</td>
<td>18,16%</td>
<td>69.712</td>
<td>15,04</td>
</tr>
<tr>
<td>2 schema:Article</td>
<td>54.972.000</td>
<td>88,7</td>
<td>10,82%</td>
<td>65.930</td>
<td>14,22</td>
</tr>
<tr>
<td>3 schema:Blog</td>
<td>3.787.000</td>
<td>110,663</td>
<td>13,50%</td>
<td>64.709</td>
<td>13,96</td>
</tr>
<tr>
<td>4 schema:Product</td>
<td>288.083.000</td>
<td>89,608</td>
<td>10,93%</td>
<td>56.388</td>
<td>12,16</td>
</tr>
<tr>
<td>5 schema:PostalAddress</td>
<td>48.804.000</td>
<td>101,086</td>
<td>12,33%</td>
<td>52.446</td>
<td>11,31</td>
</tr>
<tr>
<td>6 dv:Breadcrumb</td>
<td>269.088.000</td>
<td>76,894</td>
<td>9,38%</td>
<td>44.187</td>
<td>9,53</td>
</tr>
<tr>
<td>7 schema:AggregateRating</td>
<td>59.070.000</td>
<td>50,510</td>
<td>6,16%</td>
<td>36.823</td>
<td>7,94</td>
</tr>
<tr>
<td>8 schema:Offer</td>
<td>236.953.000</td>
<td>62,849</td>
<td>7,66%</td>
<td>35.635</td>
<td>7,69</td>
</tr>
<tr>
<td>9 schema:LocalBusiness</td>
<td>20.194.000</td>
<td>62,191</td>
<td>7,58%</td>
<td>35.264</td>
<td>7,61</td>
</tr>
<tr>
<td>10 schema:BlogPosting</td>
<td>11.458.000</td>
<td>65,397</td>
<td>7,98%</td>
<td>32.056</td>
<td>6,92</td>
</tr>
<tr>
<td>11 schema:Organization</td>
<td>101.769.000</td>
<td>52,733</td>
<td>6,43%</td>
<td>24.255</td>
<td>5,23</td>
</tr>
<tr>
<td>12 schema:Person</td>
<td>115.376.000</td>
<td>47,936</td>
<td>5,85%</td>
<td>21.107</td>
<td>4,55</td>
</tr>
<tr>
<td>13 schema:ImageObject</td>
<td>35.356.000</td>
<td>25,573</td>
<td>3,12%</td>
<td>16.084</td>
<td>3,47</td>
</tr>
<tr>
<td>14 dv:Product</td>
<td>12.411.000</td>
<td>16,003</td>
<td>1,95%</td>
<td>13.844</td>
<td>2,99</td>
</tr>
<tr>
<td>15 schema:Review</td>
<td>42.561.000</td>
<td>20,124</td>
<td>2,45%</td>
<td>13.137</td>
<td>2,83</td>
</tr>
<tr>
<td>16 dv:Review-aggregate</td>
<td>3.964.000</td>
<td>14,094</td>
<td>1,72%</td>
<td>13.075</td>
<td>2,82</td>
</tr>
<tr>
<td>17 dv:Organization</td>
<td>3.155.000</td>
<td>10,649</td>
<td>1,30%</td>
<td>9.582</td>
<td>2,07</td>
</tr>
<tr>
<td>18 dv:Offer</td>
<td>7.170.000</td>
<td>11,64</td>
<td>1,42%</td>
<td>9.298</td>
<td>2,01</td>
</tr>
<tr>
<td>19 dv:Address</td>
<td>2.138.000</td>
<td>9,674</td>
<td>1,18%</td>
<td>8.866</td>
<td>1,91</td>
</tr>
<tr>
<td>20 dv:Rating</td>
<td>1.732.000</td>
<td>9,367</td>
<td>1,14%</td>
<td>8.360</td>
<td>1,8</td>
</tr>
</tbody>
</table>

schema: = Schema.org
dv: = Google Rich Snippet Vocabulary (deprecated)
Adoption by E-Commerce Websites

Distribution by Top-Level Domain

<table>
<thead>
<tr>
<th>TLD</th>
<th>#PLDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>com</td>
<td>38344</td>
</tr>
<tr>
<td>co.uk</td>
<td>3605</td>
</tr>
<tr>
<td>net</td>
<td>1813</td>
</tr>
<tr>
<td>de</td>
<td>1333</td>
</tr>
<tr>
<td>pl</td>
<td>1273</td>
</tr>
<tr>
<td>com.br</td>
<td>1194</td>
</tr>
<tr>
<td>ru</td>
<td>1165</td>
</tr>
<tr>
<td>com.au</td>
<td>1062</td>
</tr>
<tr>
<td>nl</td>
<td>1002</td>
</tr>
</tbody>
</table>

Alexa Top-15 Shopping Sites

<table>
<thead>
<tr>
<th>Website</th>
<th>schema:Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon.com</td>
<td>✗</td>
</tr>
<tr>
<td>Ebay.com</td>
<td>✓</td>
</tr>
<tr>
<td>NetFlix.com</td>
<td>✗</td>
</tr>
<tr>
<td>Amazon.co.uk</td>
<td>✗</td>
</tr>
<tr>
<td>Walmart.com</td>
<td>✓</td>
</tr>
<tr>
<td>etsy.com</td>
<td>✗</td>
</tr>
<tr>
<td>Ikea.com</td>
<td>✓</td>
</tr>
<tr>
<td>Bestbuy.com</td>
<td>✓</td>
</tr>
<tr>
<td>Homedepot.com</td>
<td>✓</td>
</tr>
<tr>
<td>Target.com</td>
<td>✓</td>
</tr>
<tr>
<td>Groupon.com</td>
<td>✗</td>
</tr>
<tr>
<td>Newegg.com</td>
<td>✓</td>
</tr>
<tr>
<td>Lowes.com</td>
<td>✗</td>
</tr>
<tr>
<td>Macys.com</td>
<td>✓</td>
</tr>
<tr>
<td>Nordstrom.com</td>
<td>✓</td>
</tr>
</tbody>
</table>

Adoption by Top-15: 60 %
Adoption by Travel Websites

<table>
<thead>
<tr>
<th>Top 15 Travel Websites</th>
<th>schema:Hotel</th>
<th>Any Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Booking.com (uses DataVoc)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TripAdvisor</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Expedia</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Agoda</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hotels.com</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Kayak</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Priceline</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Travelocity</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Orbitz</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ChoiceHotels</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HolidayCheck</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>ChoiceHotels</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>InterContinental Hotels Group</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Marriott International</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Global Hyatt Corp.</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

Adoption: 73 %
Extend the Web with a single global data graph

1. by using RDF to publish structured data on the Web
2. by setting links between data items within different data sources.
Entities are identified with HTTP URIs

HTTP URIs take the role of global primary keys.

pd:cygri = http://richard.cyganiak.de/foaf.rdf#cygri
dbpedia:Berlin = http://dbpedia.org/resource/Berlin
URIs can be looked up on the Web

By following RDF links applications can

- navigate the global data graph
- discover new data sources
The Disco – Hyperdata Browser

Richard Cyganiak

URI: http://richard.cyganiak.de/foaf.rdf#cygri

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>event</td>
<td>...</td>
<td>G2</td>
</tr>
<tr>
<td>type</td>
<td>http://xmlns.com/foaf/0.1/Person</td>
<td>G1 G2 G3 G4</td>
</tr>
<tr>
<td>seeAlso</td>
<td>http://richard.cyganiak.de/cygri.rdf</td>
<td>G2</td>
</tr>
<tr>
<td>seeAlso</td>
<td>http://richard.cyganiak.de/foaf.rdf</td>
<td>G3</td>
</tr>
<tr>
<td>nearest airport</td>
<td>...</td>
<td>G1</td>
</tr>
<tr>
<td>phone</td>
<td>tel:+49-175-5630408</td>
<td>G1</td>
</tr>
<tr>
<td>sameAs</td>
<td>Richard Cyganiak</td>
<td>G1</td>
</tr>
<tr>
<td>based_near</td>
<td>...</td>
<td>G1</td>
</tr>
<tr>
<td>based_near</td>
<td>Berlin</td>
<td>G1</td>
</tr>
<tr>
<td>based_near</td>
<td>http://sws.geonames.org/2950159/</td>
<td>G1</td>
</tr>
<tr>
<td>currentProject</td>
<td>http://page.mi.fu-berlin.de/~cyganiak/foaf.rdf#StatCvs</td>
<td>G3</td>
</tr>
<tr>
<td>currentProject</td>
<td>http://www.wiwiss.fu-berlin.de/suhl/bizer#d2rq</td>
<td>G3</td>
</tr>
<tr>
<td>depiction</td>
<td></td>
<td>G4</td>
</tr>
<tr>
<td>Property</td>
<td>Value</td>
<td>Sources</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>population</td>
<td>3398888</td>
<td>G2</td>
</tr>
<tr>
<td>type</td>
<td>http://dbpedia.org/City</td>
<td>G2</td>
</tr>
<tr>
<td>comment</td>
<td>Berlin is the capital city and one of the sixteen Federal States of Germany. It is the country's largest city in area and population, and the second most populous city in the European Union.</td>
<td>G2</td>
</tr>
<tr>
<td>comment</td>
<td>Berlin ist die deutsche Bundeshauptstadt und als Stadtstaat ein eigenständiges Land der Bundesrepublik Deutschland. Berlin ist die bevölkerungsreichste und flächengröße Stadt Deutschlands und nach Einwohnern die zweitgrößte Stadt der EU.</td>
<td>G2</td>
</tr>
<tr>
<td>label</td>
<td>Berlin</td>
<td>G2</td>
</tr>
<tr>
<td>sameAs</td>
<td>http://sws.geonames.org/2950159/</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/Berlin</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/Capitals_in_Europe</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/Cities_in_Germany</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/German_state_capitals</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/Host_cities_of_the_Summer_Olympic_Games</td>
<td>G2</td>
</tr>
<tr>
<td>subject</td>
<td>http://dbpedia.org/resource/category/States_of_Germany</td>
<td>G2</td>
</tr>
<tr>
<td>sourceURL</td>
<td>Berlin</td>
<td>G1</td>
</tr>
<tr>
<td>depiction</td>
<td></td>
<td>G2</td>
</tr>
<tr>
<td>is birthplace of</td>
<td>Adolf von Baeyer</td>
<td>G2</td>
</tr>
</tbody>
</table>
Linked Data Search Engine: SigMa

Chris Bizer

given name: Chris [3,5,9,10,16]
family name: Bizer [3,5,9,10,16]
is creator of: DBpedia: A Nucleus for a Web of Open Data | Semantic Web Dog Food [6,18]
The TriQL.P Browser: Filtering Information using Context-, Content- and Rating-Based Trust Policies. [16]
D2R Server - Publishing Relational Databases on the Semantic Web. [16]
Named Graphs, Provenance and Trust [16]
LOD Datasets on the Web (April 2014)

http://lod-cloud.net/
Categorization by Topical Domain

- LODstats (http://stats.lod2.eu/) discovered similar number of datasets: 1048
- More statistics
 http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
Hands-on: How to access the Data for Mining?

- Download the Billion Triples Challenge Dataset
 - 4 billion triples (57 GB gzipped)
 - crawled from the public Web of Linked Data in February/June 2014
 - http://km.aifb.kit.edu/projects/btc-2014/

- Download the Web Data Commons Dump
 - 20 billion triples (373 GB gzipped)
 - RDFa, Microdata, Microformat data crawled Dezember 2014
 - http://webdatacommons.org/structureddata/
Linked Data vs. HTML-embedded Data

<table>
<thead>
<tr>
<th>LOD Cloud</th>
<th>Microdata, Microformats, RDFa</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1000 sources</td>
<td>millions of sources</td>
</tr>
<tr>
<td>covers wider range of specific topics (government, libraries, science)</td>
<td>topics focused on search engines (products, organizations)</td>
</tr>
<tr>
<td>contains more complex data structures</td>
<td>very simple and shallow data structures</td>
</tr>
<tr>
<td>partial ontology agreement</td>
<td>strong ontology agreement</td>
</tr>
<tr>
<td>identity resolution eased by RDF links</td>
<td>identity resolution often requires NLP techniques</td>
</tr>
</tbody>
</table>

2.3. Web 2.0 Applications

- A multitude of Web-based applications has sprung up which enable users to share information.

- These applications
 - collect large amounts of data using proprietary schemata.
 - form separate data spaces that are only partly accessible from the Web via:
 1. HTML interfaces
 2. Web APIs
Example: Facebook

- **Users (September 2012)**
 - 1 billion monthly active users
 - including 600 million mobile users
 - 140.3 billion friend connections
 - 1.13 trillion likes since launch in February 2009
 - 219 billion photos uploaded
 - 17 billion location-tagged posts, including check-ins

- **Data Volume**
 - over 100 Petabyte
 - including profile data, communication, usage logs, photos, ...

Sources
- https://s3.amazonaws.com/OneBillionFB/
 Facebook+1+Billion+Stats.docx
Web APIs

- Provide limited access to the collected data
 - restricted to specific queries
 - restricted number of queries

- Web API Catalog
 - lists over 14,000 Web APIs (2016)
 - lists over 7,300 Mashups

ProgrammableWeb API Growth 2005-2012

Which technologies did you use in 2012?

- REST: 85.4%
- JSONP: 35.4%
- OAuth 2: 34.6%
- SOAP: 29.2%
- RSS/Atom feeds: 13.1%
- WebSockets: 12.3%
- CORS: 11.5%
- WS-*: 10.0%
- Webhooks: 8.5%
- OAuth 1.0a: 6.9%
- PubSubHubbub: 2.3%
Mashups are based on a fixed set of data sources

Web APIs expose proprietary interfaces

No single global data space

Not index-able by generic crawlers

No automatic discovery of additional data sources
Web APIs slice the Web into Data Silos
3. What is Web Mining?

Definition

Non-trivial extraction of implicit, previously unknown and potentially useful information from
- Web content,
- Web structure and
- Web usage data.

Recurring Challenges

1. huge amount of available data → requires sampling or multiple machines
2. semi-structured nature of data → often mixture of data and text mining
3. heterogeneity of data → data integration might be a challenge
4. distributed nature of data → often requires large-scale crawling
Web Mining is a Multi-Disciplinary Field

- Draws ideas and techniques from
 - Machine Learning
 - Database Systems
 - Natural Language Processing
 - Social Network Analysis

- Sub-Fields
 1. Web Content Mining
 2. Web Structure Mining
 3. Web Usage Mining
3.1 Web Usage Mining

Definition

Discovery of patterns in clickstreams and associated data collected or generated as a result of user interactions with one or more Web sites.

Typical Sources of Data

1. automatically generated data stored in server access logs
2. e-commerce and product-oriented user events (e.g., shopping cart changes, ad or product click-throughs, purchases)
3. user profiles (e.g. Facebook) and/or user ratings (likes)
4. page attributes, page content, site structure
5. additional domain knowledge and demographic data
Leading Usage Data Collections

Enable the

- analysis of the current interests and behavior of the world’s population.
- identification of suspected terrorists.
The Web Usage Mining Process

Data Preparation Phase

- Site Content & Structure
- Domain Knowledge

Pattern Discovery Phase

- Aggregate User Models
- Pattern Analysis
- Pattern Filtering
- Aggregation Characterization

Data Preprocessing

- Web & Application Server Logs
- Data Cleaning
- Pageview Identification
- Sessionization
- Data Integration
- Data Transformation

Usage Mining

- Transaction Clustering
- Pageview Clustering
- Correlation Analysis
- Association Rule Mining
- Sequential Pattern Mining

User Transaction Database
Simple Statistical Analysis

- is the most common form of analysis.
- gives a quick overview of how a site is being used.
Web Usage Mining: Going deeper

- Prediction of the next event
- Discovery of associated events or application objects
- Recommendation of products and content
- Discovery of visitor groups with common properties and interests
- Discovery of visitor groups with common behaviour
- Characterization of visitors into predefined classes
- Card fraud detection

- Sequence mining
 - Markov chains
 - Association rules
 - Recommendation Algorithms
 - Clustering
 - Session Clustering
 - Classification

Prediction of the next event
Discovery of associated events or application objects
Recommendation of products and content
Discovery of visitor groups with common properties and interests
Discovery of visitor groups with common behaviour
Characterization of visitors into predefined classes
Card fraud detection
Example Application: Website Improvement

- Discovery of common navigation paths
- Discovery of pages on which users leave the site or discontinue shopping process
- Provide personalized websites tailored to the user’s needs

Technique: Sequential Pattern Mining
Example Application: Product Recommendations

Technique: Collaborative Filtering
Example Application: Personalized Search

Google search for "chikoo" showing 50 personalized results and 419,000 other results (0.61 seconds).

- **Manilkara zapota - Wikipedia, the free encyclopedia**
 - Sapodilla is known as chikoo ("चिकू" or chiku, "ชิคู") in India and Pakistan and sapota in some parts of India (Tamil Nadu, Kerala, Karnataka, Andhra ...)
 - Description - Other names - See also - References
 - You've visited this page 3 times. Last visit 12/4/11

- **Images for chikoo - Report images**

- Chikoo - a simple file organizer for the Mac
codingturtle.com/chikoo/
Example Application: Search Log Mining

Analysis of search queries entered by a user.

- **Examples:**
 1. **Query completion using association analysis**
 2. **Query topic detection using classification**
Web usage mining has emerged as the essential tool for realizing more personalized, user-friendly and business-optimal websites.

The key is to use the user-clickstream data for many mining purposes.

Traditionally, web usage mining is used by e-commerce sites to improve their sites and to increase profits.

It is now also used by search engines to improve search quality and to evaluate search results, etc., and by many other applications.
3.2 Web Structure Mining

Definition

Discovery of patterns in
- the hyperlink structure of webpages
- the structure of communities that interact on the Web

Exploits the graph structure, but can of course also be combined with content or usage mining techniques.

Typical Sources of Data

1. Web crawls including HTML pages and hyperlinks
2. crawls of the blogosphere
3. social networks including explicit relations between actors (your Facebook friend network)
4. other types of community data (discussion forums, email conversations, …)
Identification of Prominent Nodes

Question: Who are the “most important” actors in a social network?

Centrality

- A central actor is one involved in many edges.
- The direction of lines is not considered.

Prestige

- A prestigious actor is one who is the target of many arcs.
- The direction of arcs is considered.
Example Application: Ranking Search Results

- **PageRank**
 - exploits the hyperlinks of the Web to rank pages according to their level of “prestige”
 - a page is prestigious if many other prestigious pages link to it
 - initial algorithm used by Google
 - Today, one important factor amongst many others in the Google ranking algorithm.
Community Detection

A community is a set of actors between which interactions are (relatively) frequent.

- Finding a community in a social network is to identify a set of nodes such that they interact with each other more frequently than with those nodes outside the group.

- Methods: Components, K-Cores, Islands, ...

- Applications: Recommendation based on communities, visualization of huge networks, network compression
3.3 Web Content Mining

Definition

Automatic extraction of useful information (facts, patterns) from Web content (text, images, multimedia).

Content Mining Tasks

- Content Clustering
- Content Classification
- Sentiment Analysis
- Information Extraction
Unsupervised Learning: Given a set of documents and a similarity measure among documents find clusters such that:

- documents in one cluster are more similar to one another
- documents in separate clusters are less similar to one another

Example Application

- Google News, find similar, but not too similar news stories

Techniques

- Algorithms: K-Means, K-Medoids, DBScan
- Similarity measures: Cosine, Jaccard
Content Classification

- Supervised Learning: Given a collection of labeled documents/images (training set) find a model for the class as a function of the values of the features.

- Goal: Previously unseen documents/images should be assigned a class as accurately as possible.

- Applications
 - Classification of news into categories
 - SPAM detection
 - Filtering ‘boring’ documents based on personal profiles
 - Product categorization exploiting product images

- Classification methods commonly used for
 - Text: Naive Bayes, Support Vector Machines
 - Images: Support Vector Machines, Deep Neural Nets
Mixture of Document Clustering and Classification
Sentiment Analysis

The basic task in sentiment analysis is classifying the polarity of a given text at the document, sentence, or feature/aspect level.

- **Polarity Values**
 - Positive, neutral, negative
 - Likert scale (1 to 10)

- **Application Examples**
 - **Document-Level**
 - tweet analysis about politicians
 - **Feature/Aspect-Level**
 - analysis of product reviews

![Sentiment Analysis Diagram]

- **Most Talked About Leader on Twitter**
 - Total Tweets: 22,365
 - Leaders: Michael Martin (8%), John Gormley (6%), Gerry Adams (23%), Enda Kenny (51%), Eamon Gilmore (9%)

- **Apple iPod Touch 8gb**
 - Top 5 Features:
 - picture: 9.7
 - clarity: 9.1
 - display: 9.0
 - technology: 9.0
 - navigation: 8.7

![Apple iPod Touch 8gb Diagram]
Information Extraction

Information extraction (IE) is the task of automatically extracting structured information from unstructured or semi-structured machine-readable documents.

- **Subtasks**
 - **Named Entity Recognition and Disambiguation**
 - “M. Smith likes fishing“
 - Which M. Smith?
 - **Coreference Resolution**
 - “M. Smith likes fishing. But **he** doesn't like biking.”
 - Does he refer to M. Smith?
 - **Relationship Extraction**
 - PERSON works for ORGANIZATION
 - PERSON located in LOCATION
The degree of document structure determines the difficulty of the information extraction task.

- **Unstructured**
 - Hard to understand by machine
 - Easy to maintain by machine
 - Free texts (e.g., News articles)
 - Postings on newsgroup (e.g., apartment rentals, equipment maintenance logs, medical records)
 - Hand-written HTML
 - Cgi-generated HTML
 - XML
 - Database
Example: Named Entity Recognition

- Allows you to automatically interlink blog posts with background knowledge (like Wikipedia pages)
Example: Relationship and Fact Extraction

- **Google Squared (former Google Labs prototype)**

 ![Google Squared](image)

- **Paper about information extraction from all HTML tables on the Web**
 - **WebDataCommons Web Tables Corpus containing 233 million tables**
 - http://webdatacommons.org/webtables/
Example: Information Extraction from Wikipedia

- **Title**: Bristol
- **Description**: Bristol is a city, unitary authority and ceremonial county in South West England. Bristol is the second largest city in the West Country, and the third largest city in England, with an estimated population of 470,500.
- **Geo-Coordinates**: £1.53N, 2.53W
- **Images**: Map and images of Bristol
- **Infoboxes**: Details about Bristol's boundaries, government, etc.
- **Cross-Language Links**: Links to related articles in other languages

This example demonstrates how information extraction from Wikipedia can be used to extract structured data, such as titles, descriptions, coordinates, images, and infoboxes.
Wikipedia Information Extraction Projects
The DBpedia Knowledge Base - Version 3.9

- describes 4.00 million things, out of which 3.22 million are classified in a consistent ontology using 529 classes and 2217 different properties
 - 832,000 persons
 - 639,000 places
 - 209,000 organizations
 - 116,000 music albums

- Altogether 2.46 billion pieces of information (RDF triples)
 - 24,000,000 links to external web pages
 - 27,200,000 external links into other RDF datasets

- DBpedia Internationalization
 - provide data from 119 Wikipedia language editions for download
 - 24 popular languages we provide cleaned infobox data
Highcliff
Highcliff is a 252.4-metre (828-foot) tall skyscraper located on a south slope of Happy Valley on the Hong Kong Island in Hong Kong. The 75 storey (70 floors of which are livable space) building’s construction began in 2000 and was completed in 2003 under a design by DLN Architects & Engineers. It was the Silver Winner of the 2003 Emporis Skyscraper Award, coming in second to 30 St Mary Axe in London.

The Harbourside
The Harbourside is a 255 m (836.6 ft) tall residential skyscraper located at 1 Austin Road West, in Union Square complex on Kowloon peninsula. The building is erected on the West Kowloon Reclamation west of Kwun Chung. Construction of the 74 storey building began in 2000 and was completed in 2003 under the design by P & T Architects & Engineers. The building is, in fact, three towers joined at the base, middle
Applications of Google’s Knowledge Graph

1. Answer fact queries: “birthdate michael douglas”

2. Compare things: „compare eiffel tower vs empire state building”

<table>
<thead>
<tr>
<th>Eiffel Tower</th>
<th>Empire State Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>324 m</td>
</tr>
<tr>
<td>Floors</td>
<td>3</td>
</tr>
<tr>
<td>Architect</td>
<td>Stephen Sauvestre</td>
</tr>
<tr>
<td>Construction started</td>
<td>January 20, 1887</td>
</tr>
<tr>
<td>Architecture firms</td>
<td>Eiffel & Cie, Barber, Benard and Turenne</td>
</tr>
<tr>
<td>Function</td>
<td>Observation tower, Transmitter station</td>
</tr>
<tr>
<td>Opened</td>
<td>March 31, 1889</td>
</tr>
<tr>
<td>Engineering firm</td>
<td>Eiffel & Cie</td>
</tr>
</tbody>
</table>
Applications of Google’s Knowledge Graph

3. Enrich search results with infoboxes and lists
 • Infoboxes might also contain Microdata/RDFa data, e.g. concerts of a band

4. Rank search results using new Hummingbird ranking algorithm.
4. The Web Mining Process

Equal to the standard data mining process with the difference that data is gathered from the Web.
4.1 Gathering and Exploration

- Gathering of Web Data
 - Crawl documents or data
 - Retrieve data via Web API
 - Download pre-gathered data sets

- Exploration
 - Get an initial understanding of the data
 - Calculate basic summarization statistics
 - Visualize the data
 - Identify data problems such as outliers, missing values, duplicate records
4.2 Preprocessing and Transformation

- Transform data into a representation that is suitable for the chosen data mining methods
 - number of dimensions
 - scales of attributes (nominal, ordinal, numeric)
 - amount of data (determines hardware requirements)

- Methods
 - Aggregation, sampling
 - Dimensionality reduction / feature subset selection
 - Attribute transformation / text to term vector
 - Discretization and binarization

- Good data preparation is key to producing valid and reliable models.
- Data gathering and preparation estimated to take 70-80% of the time and effort of a Web Mining project!
4.3 Data Mining

- **Input:** Preprocessed Data
- **Output:** Model / Patterns

1. **Apply data mining method.**
2. **Evaluate resulting model / patterns.**
3. **Iterate**
 - Experiment with different parameter settings.
 - Experiment with different alternative methods.
 - Improve preprocessing and feature generation.
 - Combine different methods.