Outline

1. Vectors
2. Matrices
3. Summary
Outline

1. Vectors

2. Matrices

3. Summary
Vector

A vector is

- A 1D array of numbers
- A geometric entity with magnitude and direction
- A matrix with exactly one row or column
 - Called row vector and column vector, resp.
 - Transpose \mathbf{v}^T transposes a row vector into a column vector and vice versa
- A (latent) object or attribute

\[
\begin{bmatrix}
9.95 \\
10.77 \\
14.85 \\
14.91 \\
15.46 \\
16.44 \\
19.90 \\
20.44 \\
21.36 \\
22.31 \\
22.36 \\
23.35
\end{bmatrix}
\]

\[
\begin{bmatrix}
-0.70 \\
8.60 \\
21.90 \\
9.90 \\
10.00
\end{bmatrix}
\]
Vector norm

The norm of a vector defines its magnitude. Let
\[\mathbf{v} = \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix}^T. \]

- **Euclidean norm**: \(\| \mathbf{v} \| = \sqrt{\sum_{i=1}^{n} v_i^2} \)
 - Corresponds to intuitive notion of length in Euclidean space

- **\(L_p \) norm** for \(1 \leq p \leq \infty \):
 \[\| \mathbf{v} \|_p = \left(\sum_{i=1}^{n} |v_i|^p \right)^{1/p} \]
 - \(L_1 \) norm = sum of absolute values
 (Manhattan distance from origin)
 - \(L_2 \) norm = Euclidean norm
 (bird-fly distance from origin)
 - \(L_\infty \) norm = maximum absolute value
 - The \(L_p \) norms decrease as \(p \) increases, i.e.,
 \[\| \mathbf{v} \|_{p+a} \leq \| \mathbf{v} \|_p \quad \text{for} \quad a \geq 0 \]

- **Properties of vector norms**
 - \(\| \mathbf{v} \| > 0 \) when \(\mathbf{v} \neq \mathbf{0} \) and \(\| \mathbf{v} \| = 0 \) iff \(\mathbf{v} = \mathbf{0} \)
 - \(\| a \mathbf{v} \| = |a| \| \mathbf{v} \| \) (absolute scalability)
 - \(\| \mathbf{v}_1 + \mathbf{v}_2 \| \leq \| \mathbf{v}_1 \| + \| \mathbf{v}_2 \| \) (triangle inequality)

\[\mathbf{v} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \]
\[\| \mathbf{v} \|_1 = 7 \]
\[\| \mathbf{v} \| = 5 \]
\[\| \mathbf{v} \|_\infty = 4 \]
Norms and distances

The **distance** between two vectors \(u, v \in \mathbb{R}^n \) can be quantified with norm \(\| u - v \| \).

- **Stockholm**, \(s = (-0.70, 8.60, 21.90, 9.90, 10.00) \)
- **Minsk**, \(m = (-2.10, 12.20, 23.60, 10.20, 10.60) \)
- **Athens**, \(a = (12.90, 20.30, 32.60, 23.10, 22.30) \)

<table>
<thead>
<tr>
<th></th>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(s)</td>
<td>(m)</td>
<td>(a)</td>
</tr>
<tr>
<td>(s)</td>
<td>0.00</td>
<td>7.60</td>
<td>61.50</td>
</tr>
<tr>
<td>(m)</td>
<td>7.60</td>
<td>0.00</td>
<td>56.70</td>
</tr>
<tr>
<td>(a)</td>
<td>61.50</td>
<td>56.70</td>
<td>0.00</td>
</tr>
<tr>
<td>(s)</td>
<td>0.00</td>
<td>4.27</td>
<td>27.60</td>
</tr>
<tr>
<td>(m)</td>
<td>4.27</td>
<td>0.00</td>
<td>25.98</td>
</tr>
<tr>
<td>(a)</td>
<td>27.60</td>
<td>25.98</td>
<td>0.00</td>
</tr>
<tr>
<td>(s)</td>
<td>0.00</td>
<td>3.60</td>
<td>13.60</td>
</tr>
<tr>
<td>(m)</td>
<td>3.60</td>
<td>0.00</td>
<td>15.00</td>
</tr>
<tr>
<td>(a)</td>
<td>13.60</td>
<td>15.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Dot product (algebraic definition)

The dot product of two vectors $u, v \in \mathbb{R}^n$ is given by

$$u \cdot v = \sum_{i=1}^{n} u_i v_i.$$

- Also known as scalar product or inner product
- We’ll often use matrix product notation and write $u^T v$
- Properties (with $a, b \in \mathbb{R}$)
 - $u \cdot v = v \cdot u$
 - $(au) \cdot v = a(u \cdot v)$
 - $(au + bv) \cdot w = (au) \cdot w + (bv) \cdot w$
- Many uses, many interpretations
With dot products, we can ...

- Compute the (squared) Euclidean norm
 \[\mathbf{v} \cdot \mathbf{v} = \sum_{i=1}^{n} v_i^2 = \|\mathbf{v}\|^2 \]

- Normalize a vector to length 1 (then a unit vector)
 \[\hat{\mathbf{v}} = \mathbf{v} / \|\mathbf{v}\| \]

- Determine the value of a coordinate
 \[v_i = \mathbf{v} \cdot \mathbf{e}_i, \]
 where \(\mathbf{e}_i \) denotes the \(i \)-th standard basis vector (i.e., \([\mathbf{e}_i]_j = 1 \) if \(i = j \) else 0)

- Compute the sum of the elements of a vector
 \[\mathbf{v} \cdot \mathbf{1}_n = \sum_{i=1}^{n} v_i, \]
 where \(\mathbf{1}_n \) is the all-ones vector of dimensionality \(n \)

- ...
Dot product: Weighted sum

The elements of one vector are interpreted as weights for the elements of the other vector.

Example: Anna goes shopping

<table>
<thead>
<tr>
<th>Item</th>
<th>Bread</th>
<th>Butter</th>
<th>Pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price/piece</td>
<td>1 €</td>
<td>0.50 €</td>
<td>3 €</td>
</tr>
<tr>
<td>Quantity bought</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

• How much does Anna pay?
• Prices can be interpreted as “weights”: $\mathbf{p} = (1 \ 0.5 \ 3)^T$
• Quantities are $\mathbf{n} = (1 \ 2 \ 5)^T$
• Total is $\mathbf{p} \cdot \mathbf{n} = 1 \cdot 1 + 0.5 \cdot 2 + 3 \cdot 5 = 17$
• Similarly: Can interpret quantities as weights for prices
Dot product: Expected value

One vector corresponds to probabilities, the other one to a random variable.

Example: Bob is gambling

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Jackpot</th>
<th>Win</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.1</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Amount won</td>
<td>5 €</td>
<td>1 €</td>
<td>-2 €</td>
</tr>
</tbody>
</table>

- How much does Bob win in expectation? (Should he play?)
- Probabilities \(\mathbf{p} = (0.1 \ 0.2 \ 0.7)^T \)
 - A non-negative vector that sums to one (\(\|\mathbf{p}\|_1 = 1 \)) is called a probability vector
 - Corresponds to a probability distribution over a finite set of outcomes
- Amounts won \(\mathbf{x} = (5 \ 1 \ -2)^T \)
 - Corresponds to a random variable; associates a real value with each outcome
- Expected value \(\mathbf{p} \cdot \mathbf{x} = 0.1 \cdot 5 + 0.2 \cdot 1 + 0.7 \cdot (-2) = -0.7 \)
Dot product: Sample variance

Denote by \(\bar{u} = \frac{1}{n} \sum_i u_i \) the mean of \(u \). If we treat the entries of \(u \) as samples from some distribution, then the \textit{sample variance} is given by

\[
\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (u_i - \bar{u})^2 = \frac{\|u - \bar{u}\|^2}{n} = \frac{(u - \bar{u}) \cdot (u - \bar{u})}{n},
\]

where \(\bar{u} \) denotes the \textit{sample mean vector}, i.e., \([\bar{u}]_i = \bar{u}\) for \(1 \leq i \leq n\).

- Example

 \(u = (10 \ 11 \ 12)^T \)

 \(\bar{u} = 11, \quad \bar{u} = (11 \ 11 \ 11)^T \)

 \(u - \bar{u} = (-1 \ 0 \ 1)^T \)

 \(\sigma^2 = 2/3, \quad \|u\|^2 = 365 \)

- Variances are thus closely related to norms; the key difference is centering and averaging
- When we center data before analyzing it, dot products are thus proportional to variances \((u \cdot u)\) or covariances \((u \cdot v)\)
Dot product: Sets and intersections

The *indicator vector* of a subset T of a set $S = \{ s_1, \ldots, s_n \}$ is the vector x such that $x_i = 1$ if $s_i \in T$ and $x_i = 0$ if $s_i \notin T$. If u and v are indicator vectors for subsets $U, V \subseteq S$, resp., then $u \cdot v = |U \cap V|$.

- $S = \{ \text{France, Germany, Denmark, Poland} \}$
- Anna visited France, Germany, and Poland: $u = (1 \ 1 \ 0 \ 1)^T$
- Bob visited Germany, Denmark, and Poland: $v = (0 \ 1 \ 1 \ 1)^T$
- Number of countries visited by both:

$$u \cdot v = 1 \cdot 0 + 1 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 = 2 = |\{ \text{Germany, Poland} \}|$$
An alternative geometric definition of the dot product of two vectors \(\mathbf{u}, \mathbf{v} \in \mathbb{R}^n \) is

\[
\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta,
\]

where \(0 \leq \theta \leq \pi \) denotes the angle between \(\mathbf{u} \) and \(\mathbf{v} \).
Why is this?

Let’s focus on the 2D case. Recall the law of cosines:

\[c^2 = a^2 + b^2 - 2ab \cos \theta. \]

Now set \(u = B - C \) and \(v = A - C \) and observe that \(v - u = A - B \).

\[
\cos \theta = \frac{a^2 + b^2 - c^2}{2ab} = \frac{\|u\|^2 + \|v\|^2 - \|v - u\|^2}{2\|u\|\|v\|}
\]

\[
= \frac{u \cdot u + v \cdot v - (v - u) \cdot (v - u)}{2\|u\|\|v\|}
\]

\[
= \frac{u \cdot u + v \cdot v - v \cdot v + 2u \cdot v - u \cdot u}{2\|u\|\|v\|}
\]

\[
= \frac{u \cdot v}{\|u\|\|v\|}
\]
Dot product: Test for orthogonality

Two nonzero vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are **orthogonal** iff $\mathbf{u} \cdot \mathbf{v} = 0$.

- Since $0 = \mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$ and $\|\mathbf{u}\|, \|\mathbf{v}\| > 0$, we have $\cos \theta = 0$
- And this means that the angle is 90 degrees
Dot product: Cosine similarity (1)

The angle between \(\mathbf{u} \) and \(\mathbf{v} \) is another way to measure the similarity between two vectors. The cosine similarity of \(\mathbf{u} \) and \(\mathbf{v} \) is given by

\[
\cos(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}.
\]

- \(-1 \leq \cos(\mathbf{u}, \mathbf{v}) \leq 1\)
- Vectors that point in roughly the same direction → small angle → cosine similarity \(\approx 1 \)
- Vectors that point in roughly opposite directions → large angle → cosine similarity \(\approx -1 \)
- Vectors that are roughly orthogonal → roughly right angle → cosine similarity \(\approx 0 \)
- Popular in IR to determine the similarity between a document and a query
Dot product: Cosine similarity (2)
Dot product: Pearson correlation

The **Pearson correlation coefficient** is a measure of linear correlation. It is given by

$$\rho_{x,y} = \frac{(x - \bar{x}) \cdot (y - \bar{y})}{\|x - \bar{x}\| \|y - \bar{y}\|}.$$

- Numerator proportional to the sample covariance
- Denominator proportional to sample standard deviations
- Closely related to cosine similarity but performs centering
 - This is sometimes desired
 - And sometimes a bad idea (e.g., example last slide)
Dot product: Similarity

The dot product itself can also be seen as a measure of similarity or compatibility. Recall

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta.$$

Example: Shopping transactions

- Like in previous example, vectors \mathbf{u} and \mathbf{v} correspond to persons
- Elements corresponds to frequencies of buying each product
- We can think of the direction of a vector as “preference”
 - Which products are being bought?
 - $\cos \theta$ large when \mathbf{u} and \mathbf{v} have similar interest
- We can think of the magnitude of a vector as “strength”
 - How much is being bought?
 - $\|\mathbf{u}\| \|\mathbf{v}\|$ large when both persons buy a lot
- If $\mathbf{u} \cdot \mathbf{v}$ is large, \mathbf{u} and \mathbf{v} have similar shopping behaviour and buy a lot
Dot product: Projection

The **vector projection** of \(\mathbf{v} \) onto \(\mathbf{u} \) is given by

\[
\text{proj}_u(\mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|} \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^2} \mathbf{u}
\]

- The scalar projection describes how far \(\mathbf{v} \) points in the direction \(\mathbf{u} \)
- The vector projection is a vector pointing this far in the direction of \(\mathbf{u} \)
Outline

1. Vectors

2. Matrices

3. Summary
Notation

Let $A \in \mathbb{R}^{m \times n}$ be a real $m \times n$ matrix. We write

- a_{ij} or A_{ij} (both scalars) for the value of entry (i, j)
- a_j or A_{*j} (both column vectors) for the j-th column of A
- a_i (column vector) or A_{i*} (row vector) for the i-th row of A

Thus

$$A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix} = \begin{pmatrix}
 A_{1*} \\
 A_{2*} \\
 \vdots \\
 A_{n*}
\end{pmatrix}$$
Full matrix ring (addition)

The set of all matrices in \(\mathbb{R}^{n \times n} \) form a ring, the **full matrix ring**.

- Addition and substraction are element-wise

\[
(A + B)_{ij} = a_{ij} + b_{ij} \\
(A - B)_{ij} = a_{ij} - b_{ij}
\]

- The additive identity is the \(n \times n \) zero matrix \(0_{n \times n} \)
- The additive inverse is \(-A \) with \([-A]_{ij} = -a_{ij} \)
- In general \([cA]_{ij} = ca_{ij} \) for \(c \in \mathbb{R} \) (scalar multiplication)
- Addition is associative and commutative
Full matrix ring (multiplication)

- For multiplication, we take dot products

\[
[AB]_{ij} = a_i \cdot b_j = \sum_{k=1}^{n} a_{ik} b_{kj}
\]

- The multiplicative identity is the \(n \times n \) identity matrix \(I_n \)

\[
I_n = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
\]

- Multiplication is associative, but not commutative \((AB \neq BA \text{ in general})\)

- Multiplication distributes over addition \((A(B + C) = AB + AC\) and \((B + C)A = BA + CA)\)

- Multiplication does not always have an inverse (division)
Rectangular matrices

- We generally have rectangular matrices $A \in \mathbb{R}^{m \times n}$
- We can only add and subtract matrices of the same dimensions $(A_{m \times n} + B_{m \times n})$
- We can only multiply matrices with a matching inner dimension
 - We can multiply $A \in \mathbb{R}^{m \times r}$ with $B \in \mathbb{R}^{r \times n}$ (inner dimension is r)
 - Gives an $m \times n$ matrix (outer dimensions)
 - $[AB]_{ij} = a_i \cdot b_j = \sum_{k=1}^{r} a_{ik} b_{kj}$
Interpretation for matrix multiplication (1)

When we multiply A and B, we compute all dot products between rows of A and columns of B.

- We can apply any of the interpretations of the dot product.
- E.g., weighted sum
 - m supermarkets, r products, n persons
 - $a_{ik} =$ price of product k at supermarket i
 - $b_{kj} =$ quantity of product k bought by person i
 - $[AB]_{ij} =$ how much the j-th person would pay when buying at the i-th supermarket
- E.g., covariance
 - If all columns of $A_{m \times n}$ are centered ($\sum_k a_{ik} = 0$), then $\frac{1}{m} A^T A \in \mathbb{R}^{n \times n}$ is the sample covariance matrix
 - $[\frac{1}{m} A^T A]_{ii}$ holds the sample variance of column i
 - $[\frac{1}{m} A^T A]_{ij}$ holds the sample covariance between columns i and j
Non-negative matrix factorization (NMF) learns a parts-based representation of faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn superpositions of basis images. Unlike VQ and PCA, NMF learns to represent faces with a set of basis images resembling parts of faces.

We can also interpret rows i of AB as a linear combination of the rows of B with the coefficients coming from A

$$[AB]_{i*} = a_{i1}B_{1*} + a_{i2}B_{2*} + \cdots + a_{ir}B_{r*},$$

and, similarly, the columns of AB as linear combinations of the columns of A

$$[AB]_{*j} = b_{1j}A_{*1} + b_{2j}A_{*2} + \cdots + b_{rj}A_{*r}.$$
We can view matrix AB as the sum of the r component matrices obtained by multiplying the k-th column of A and the k-th row of B:

$$AB = A_{*1}B_{1*} + A_{*2}B_{2*} + \cdots + A_{*r}B_{r*}$$

- Components $A_{*k}B_{k*}$ are outer products ($m \times n$ matrices)
- Note: when $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$, the matrix product uv^T corresponds to an outer product (an $m \times n$ matrix)
- In our supermarket example
 - Components correspond to products
 - Entry (i, j) of k-th component indicates how much the j-th person would pay for product k when buying at the i-th supermarket

$$C = \begin{array}{c}
\begin{array}{c}
\vdots \\
\vdots \\
\vdots
\end{array}
\end{array}$$
Transposes

The matrix transpose A^T switches rows and columns, i.e.,

$$[A^T]_{ij} = a_{ji}.$$

The following properties hold

- $(A^T)^T = A$
- $(A + B)^T = A^T + B^T$
- $(cA)^T = cA^T$
- $(AB)^T = B^T A^T$
Summing and scaling

Let \(A \in \mathbb{R}^{m \times n} \). Denote by \(\mathbf{1}_n \) the all-ones vector of dimensionality \(n \). For \(s \in \mathbb{R}^n \), denote by \(\text{diag}(s) \) the \(n \times n \) matrix with the entries of \(s \) on the main diagonal:

\[
\text{diag}(s) = \begin{pmatrix}
 s_1 & 0 & \cdots & 0 \\
 0 & s_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & s_n
\end{pmatrix}
\]

- \(A\mathbf{1}_n \) computes the row sums of \(A \)
- \(\mathbf{1}_m^T A \) computes the column sums of \(A \)
- \(A \text{diag}(c) \) scales each column \(j \) of \(A \) by \(c_j, c \in \mathbb{R}^n \)
- \(\text{diag}(r) A \) scales each row \(i \) of \(A \) by \(r_i, r \in \mathbb{R}^m \)
Matrices as linear maps

- A matrix \(A \in \mathbb{R}^{m \times n} \) is a **linear map** from \(\mathbb{R}^n \) to \(\mathbb{R}^m \)
 - If \(x \in \mathbb{R}^n \), then \(y = Ax \in \mathbb{R}^m \) is the **image** of \(x \)
 - \(y = \sum_{j=1}^{n} a_j x_j \), i.e., a linear combination of the columns of \(A \)

- If \(A \in \mathbb{R}^{m \times r} \) and \(B \in \mathbb{R}^{r \times n} \), then \(AB \) maps from \(\mathbb{R}^n \) to \(\mathbb{R}^m \)
 - Product \(AB \) corresponds to composition of linear maps \(A \) and \(B \)

- Square matrix \(A \in \mathbb{R}^{n \times n} \) is **invertible** (= **nonsingular**) iff there is matrix \(B \in \mathbb{R}^{n \times n} \) such that \(AB = I \)
 - Matrix \(B \) is the **inverse** of \(A \), denoted \(A^{-1} \)
 - If \(A \) is invertible, then \(AA^{-1} = A^{-1} A = I \)
 - \(AA^{-1} x = A^{-1} A x = x \)
 - Non-square matrices do not have (general) inverses but can have **left** or **right inverses**: \(AR = I \) or \(LA = I \)

- The **transpose** of \(A \in \mathbb{R}^{m \times n} \) is a linear map \(A^T : \mathbb{R}^m \to \mathbb{R}^n \)
 - \((A^T)_{ij} = A_{ji} \)
 - Generally, transpose is **not** the inverse \(AA^T \neq I \)
Matrix norms

- **Matrix norms** measure the magnitude of the matrix
 - Magnitude of the values in the matrix
 - Magnitude of the image

- **Operator norms** measure how large the image of an unit vector can get
 - Induced by a vector norm
 - For \(p \geq 1 \), \(\| A \|_p = \max \{ \| A x \|_p \mid \| x \|_p = 1 \} \)
 - \(\| A \|_1 = \) maximum sum of absolute values of a column
 - \(\| A \|_\infty = \) maximum sum of absolute values of a row
 - **Spectral norm**: \(\| A \|_2 = \) largest singular value of \(A \) (more later)

- **The Frobenius norm** is the vector-\(L_2 \) norm applied to matrices (treating them as a vector)
 - \(\| A \|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2} \)
 - Note: \(\| A \|_F \neq \| A \|_2 \) (but sometimes Frobenius norm is referred to as \(L_2 \) norm)
Matrix rank and linear independence

- A vector $\mathbf{u} \in \mathbb{R}^n$ is **linearly dependent** on set of vectors $V = \{\mathbf{v}_i\} \subseteq \mathbb{R}^n$ if \mathbf{u} can be expressed as a linear combination of vectors in V
 - $\mathbf{u} = \sum_i a_i \mathbf{v}_i$ for some $a_1, \ldots, a_n \in \mathbb{R}$
 - Set V is linearly dependent if some $\mathbf{v}_i \in V$ is linearly dependent on $V \setminus \{\mathbf{v}_i\}$
 - If V is not linearly dependent, it is **linearly independent**

- The **column rank** of matrix \mathbf{A} is the maximum number of linearly independent columns of \mathbf{A}

- The **row rank** of \mathbf{A} is the maximum number of linearly independent rows of \mathbf{A}

- The **Schein rank** of \mathbf{A} is the least integer r such that $\mathbf{A} = \mathbf{L}\mathbf{R}$ for some $\mathbf{L} \in \mathbb{R}^{m \times r}$ and $\mathbf{R} \in \mathbb{R}^{r \times n}$
 - Equivalently, the least r such that \mathbf{A} is a sum of r vector outer products

- **All these ranks are equivalent**
 - E.g., matrix has rank 1 iff it is an outer product of two (non-zero) vectors
Matrices as systems of linear equations

- A matrix can hold the coefficients of a system of linear equations (c.f. Chinese *Nine Chapters on Arithmetic*)

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{align*}
\]

\[
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
=
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{pmatrix}
\]

- If the coefficient matrix \(A \) is invertible, the system has exact solution \(x = A^{-1}b \)
- If \(m < n \) the system is underdetermined and can have infinite number of solutions
- If \(m > n \) the system is overdetermined and (usually) does not have an exact solution
- The least-squares solution is the vector \(x \) that minimizes \(\|Ax - b\|_2^2 \) (cf. linear regression)
Special types of matrices

- The **diagonals** of matrix A go from top-left to bottom-right
 - The main diagonal contains the elements a_{ii}
 - The k-th upper diagonal contains the elements $a_{i,(i+k)}$
 - The k-th lower diagonal contains the elements $a_{(i+k),i}$
 - The **anti-diagonals** go from top-right to bottom-left

- Matrix is **diagonal** if all its non-zero values are in a diagonal (typically main diagonal)
 - **Bi-diagonal** matrices have values in two diagonals, etc.

- Matrix A is **upper (right) triangular** if all of its non-zeros are in or above the main diagonal
 - **Lower (left) triangular** matrices have all non-zeros in or below main diagonal
 - Upper left and lower right triangular matrices replace diagonal with anti-diagonal

- A square matrix P is **permutation matrix** if each row and each column of P has exactly one 1 and rest are 0s
 - If P is a permutation matrix, PA permutes the order of the rows and AP the order of the columns of A
Orthogonal matrices

- A set $V = \{v_i\} \subset \mathbb{R}^n$ is **orthogonal** if all vectors in V are mutually orthogonal
 - $v \cdot u = 0$ for all $v, u \in V$
 - If all vectors in V also have unit norm ($\|v\|_2 = 1$), V is **orthonormal**

- A square matrix A is **orthogonal** if its columns are a set of orthonormal (!) vectors or equivalently
 - Its rows are orthonormal (and vice versa)
 - $A^T A = I_n$
 - $A^{-1} = A^T$

- An $m \times n$ matrix A is
 - **column-orthogonal** if columns are a set of orthonormal vectors (only possible if $m \geq n$); then A^T is left inverse ($A^T A = I_n$)
 - **row-orthogonal** if rows are a set of orthonormal vectors (only possible if $m \leq n$); then A^T is right inverse ($AA^T = I_m$)

- If A and B are orthogonal, so is AB
 - Similarly: column-orthogonality and row-orthogonality is preserved
Outline

1. Vectors

2. Matrices

3. Summary
Lessons learned

• Many uses, many interpretations
 ▶ Vectors
 ▶ Matrices
 ▶ Dot products
 ▶ Matrix products

• Magnitudes and distances are measured by norms

• Basic concepts of linear algebra

• Special types of matrices: diagonal, triangular, orthogonal
Suggested reading

- Any (elementary) linear algebra text book
 - Carl Meyer
 Matrix Analysis and Applied Linear Algebra
 Society for Industrial and
 Applied Mathematics, 2000
 http://www.matrixanalysis.com

- Wolfram MathWorld articles

- Wikipedia articles