Hot Topics in Machine Learning
05 – Undirected Graphical Models

Prof. Dr. Rainer Gemulla

Universität Mannheim

HWS 2017
Overview

In this lecture
- Introduction to graphical models
- Basics of undirected models (called Markov networks)
- Basics of log-linear models
- Basics of inference in undirected models

Not in this lecture (but partly in subsequent lectures)
- Applications
- Directed models (called Bayesian networks)
- High coverage or in-depth discussion of inference
- Learning (neither structure nor parameters)
Outline

1. Introduction to Graphical Models

2. Preliminaries

3. Markov Network Graphs

4. Markov Networks

5. Log-Linear Models

6. Inference

7. Summary
Reasoning with uncertainty

- **Goal:** Automated reasoning system
 - Take all available information
 (e.g., patient information: symptoms, test results, personal data)
 - Reach conclusions
 (e.g., which diseases the patient has, which medication to give)

- **Desiderata**
 1. Separation of knowledge and reasoning
 - Model-based representation of knowledge (ideal: declarative)
 - General suite of reasoning algorithms, applicable to many domains
 2. Principled treatment of uncertainty
 - Partially observed data
 - Noisy observations
 - Non-deterministic relationships

- **Lots of applications**
 - Medical diagnosis, fault diagnosis, analysis of genetic and genomic data, communication and coding, analysis of marketing data, speech recognition, natural language understanding, segmenting and denoising images, social network analysis, ...
Probabilistic models

- Multiple interrelated aspects may relate to the reasoning task
 - Possible diseases
 - Hundreds of symptoms and diagnostic tests
 - Personal characteristics

1. Characterize data by a set of random variables
 - Flu (yes / no)
 - Hayfever (yes / no)
 - Season (Spring / Sommer / Autumn / Winter)
 - Congestion (yes / no)
 - MusclePain (yes / no)

 Variables and their possible values important design decision

2. Model dependencies by a \textit{joint distribution}
 - Diseases, season, and symptoms are interdependent
 - Probabilistic models construct joint probability space
 \[2 \cdot 2 \cdot 4 \cdot 2 \cdot 2 \text{ outcomes (64 values, 63 non-redundant)} \]
 - Given joint probability space, interesting questions can be answered

\[P(\text{Flu} \mid \text{Season}=\text{Spring}, \text{Congestion}, \neg\text{MusclePain}) \]

Specifying a joint distribution is infeasible in general!
Probabilistic graphical models are a . . .

- Graph-based representation of **direct probabilistic interactions**
- Break-down of high-dimensional distributions into smaller **factors** (here: 63 vs. 17 non-redundant parameters)
- Compact representation of a set of **conditional independencies**

Graph representation

Factorization

\[
P(S, F, H, M, C) = P(S) P(F | S) P(H | S) P(C | F, H) P(M | F)
\]

Independencies

\((F \perp H | S), \ (C \perp M, S | F, H), \ (M \perp H, C, S | F) \)
Main components

1. Representation
 ▶ Conciseness
 ▶ Variables tend to interact *directly* only with very few others
 ▶ Natural and compact encoding as graphical model
 ▶ Transparency
 ▶ Models can be understood/evaluated by human experts

2. Inference
 ▶ Answer questions using the distribution as model of the world
 ▶ Work on graph structure
 → Orders of magnitude faster than working on joint probability

3. Learning
 ▶ Learn a model from data that captures past experience
 ▶ Involves learning parameters, sometimes also structure
 → Often better reflection of domain than hand-constructed models, sometimes surprising insights

Graphical models exploit locality structure, which (approximately) appears in many distributions arising in practice.
Outline

1. Introduction to Graphical Models

2. Preliminaries

3. Markov Network Graphs

4. Markov Networks

5. Log-Linear Models

6. Inference

7. Summary
Recap: conditional probability

- The **conditional probability** of A, given that B is true, is defined as

$$P(A | B) = \frac{P(A, B)}{P(B)} \quad \text{if } P(B) > 0$$

- Can be represented in a **conditional probability table** (CPT)

<table>
<thead>
<tr>
<th>$P(X, Y)$</th>
<th>H</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X=H$</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>$X=T$</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

| $P(X | Y)$ | H | T |
|-----------|-----|-----|
| $X=H$ | 0.25| 0.33|
| $X=T$ | 0.75| 0.66|

- Generally, for sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ of random variables,

$$P(\mathcal{X} | \mathcal{Y}, \mathcal{Z}) = \frac{P(\mathcal{X}, \mathcal{Y} | \mathcal{Z})}{P(\mathcal{Y} | \mathcal{Z})}$$
Recap: conditional independence

- Unconditional independence is rare
- \(X \) and \(Y \) are **conditionally independent** given \(Z \) iff

\[
P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)
\]

- Denoted \(X \perp Y \mid Z \)
- Example
 - Event that it rains tomorrow (\(X \))
 - Event that ground is wet (\(Y \))
 - Event that it rains now (\(Z \))
 - Then: \(X \not\perp Y \) but \(X \perp Y \mid Z \)
- Generally, for sets \(\mathcal{X}, \mathcal{Y}, \mathcal{Z} \) of random variables,

\[
\mathcal{X} \perp \mathcal{Y} \mid \mathcal{Z} \iff P(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z}) = P(\mathcal{X} \mid \mathcal{Z})P(\mathcal{Y} \mid \mathcal{Z})
\]
Properties of conditional independence

• In general, $\mathcal{X} \independent \mathcal{Y}$ does not imply nor is implied by $\mathcal{X} \independent \mathcal{Y} \mid \mathcal{Z}$

• The following relationships hold:

\[
(\mathcal{X} \independent \mathcal{Y} \mid \mathcal{Z}) \iff (\mathcal{Y} \independent \mathcal{X} \mid \mathcal{Z}) \quad \text{(symmetry)}
\]
\[
(\mathcal{X} \independent \mathcal{Y}, \mathcal{W} \mid \mathcal{Z}) \implies (\mathcal{X} \independent \mathcal{Y} \mid \mathcal{Z}) \quad \text{(decomposition)}
\]
\[
(\mathcal{X} \independent \mathcal{Y}, \mathcal{W} \mid \mathcal{Z}) \implies (\mathcal{X} \independent \mathcal{Y} \mid \mathcal{W}, \mathcal{Z}) \quad \text{(weak union)}
\]
\[
(\mathcal{X} \independent \mathcal{Y} \mid \mathcal{Z}) \land (\mathcal{X} \independent \mathcal{W} \mid \mathcal{Y}, \mathcal{Z}) \implies (\mathcal{X} \independent \mathcal{Y}, \mathcal{W} \mid \mathcal{Z}) \quad \text{(contraction)}
\]

• For positive distributions and mutually disjoint sets $\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{W}$:

\[
(\mathcal{X} \independent \mathcal{Y} \mid \mathcal{W}, \mathcal{Z}) \land (\mathcal{X} \independent \mathcal{W} \mid \mathcal{Y}, \mathcal{Z}) \implies (\mathcal{X} \independent \mathcal{Y}, \mathcal{W} \mid \mathcal{Z}) \quad \text{(intersection)}
\]
Example

- Conditional independencies
 - $F \perp H \mid S$
 - $C \perp M, S \mid F, H$
 - $M \perp H, C, S \mid F$

- By applying definitions and properties of conditional independence, implies factorization

$$P(S, F, H, M, C) = P(S) P(F \mid S) P(H \mid S) P(M \mid F) P(C \mid F, H)$$
Querying a distribution (1)

Consider a joint distribution on a set of variables \mathcal{X}.

- Let $\mathcal{E} \subseteq \mathcal{X}$ be a set of **evidence variables** that take values \mathbf{e}
- Then $\mathcal{W} = \mathcal{X} - \mathcal{E}$ is the set of **latent variables**
- Let $\mathcal{Y} \subseteq \mathcal{W}$ be a set of **query variables**
- Then $\mathcal{Z} = \mathcal{W} - \mathcal{Y}$ is the set of **non-query variables**

Example

- $\mathcal{X} = \{ \text{Season, Congestion, MusclePain, Flu, Hayfever} \}$
- $\mathcal{E} = \{ \text{Season, Congestion, MusclePain} \}$
- $\mathbf{e} = \{ \text{Spring, Yes, No} \}$
- $\mathcal{W} = \{ \text{Flu, Hayfever} \}$
- $\mathcal{Y} = \{ \text{Flu} \}$
- $\mathcal{Z} = \{ \text{Hayfever} \}$
Querying a distribution (2)

\[e = \{ \text{Spring, Congestion, } \neg \text{MusclePain} \} \]

<table>
<thead>
<tr>
<th>(P(\mathcal{W} \mid e))</th>
<th>Flu</th>
<th>(\neg \text{Flu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayfever</td>
<td>5%</td>
<td>35%</td>
</tr>
<tr>
<td>(\neg \text{Hayfever})</td>
<td>40%</td>
<td>20%</td>
</tr>
</tbody>
</table>

1. **(Conditional) probability query**
 - Compute the *posterior distribution* \(P(\mathcal{Y} \mid e) \) of the query variables
 - E.g., \(P(\text{Flu} \mid e) \rightarrow \text{Yes (45\%), No (55\%)} \)

2. **(Conditional) MAP query**
 - Compute the most likely value of the latent variables
 \[
 \text{MAP}(\mathcal{W} \mid e) = \arg \max_w P(w \mid e) = \arg \max_w P(w, e)
 \]
 - E.g., \(\text{MAP(\text{Flu, Hayfever} \mid e) \rightarrow Only \ text{flu}} \)

3. **(Conditional) marginal MAP query**
 - Compute the most likely value of the query variables
 \[
 \text{MAP}(\mathcal{Y} \mid e) = \arg \max_y P(y \mid e) = \arg \max_y \sum_z P(y, z, e)
 \]
 - E.g., \(\text{MAP(\text{Flu} \mid e) \rightarrow No \ text{flu (})} \)
Querying graphical models

- Graphical models induce conditional independences
- Queries reason about dependencies between variables

Can we evaluate queries more efficiently given a graphical model and its associated independences?

- Yes, we can! Suppose $\mathcal{E} = \{\text{Season, MusclePain}\}$:

| $P(\mathcal{W} | e)$ | Flu | \negFlu |
|----------------------|-----|-----------|
| Hayfever | 18% | 12% | 30% |
| \negHayfever | 42% | 28% | 70% |

- E.g., monotonicity now holds:
 \[
 \text{MAP(Flu, Hayfever} | \mathcal{E}) = (\text{MAP(Flu} | \mathcal{E}), \text{MAP(Hayfever} | \mathcal{E}))
 \]

- Independence properties help inference
Outline

1. Introduction to Graphical Models
2. Preliminaries
3. Markov Network Graphs
4. Markov Networks
5. Log-Linear Models
6. Inference
7. Summary
Misconception example

- Alice, Bob, Charles, Debbie study in pairs for the HTML exam

I misspoke in class, giving rise to a possible misconception
Some students figured out the problem, others did not

Which of the students has the misconception?
- If A does not have the misconception, she may help B and D → Students influence each other
- If A has the misconception, she may be helped by B and D → Influence has no natural “direction”
- A does not study with C → No direct influence between A and C
Markov network graph

Definition

A **Markov network graph** is an undirected graph \(\mathcal{H} = (\mathcal{X}, E) \), where \(\mathcal{X} \) is a set of random variables and \(E \subseteq \mathcal{X} \times \mathcal{X} \) is a set of edges.

\[\mathcal{X} = \{ A, B, C, D \} \]

\[E = \{ (A, B), (B, C), (C, D), (D, A) \} \]

- Think of edges as direct probabilistic interactions
- *Absence* of edges encode conditional independence statements
Active paths

Definition

Let $X_1 \ldots X_k$ be a path in $\mathcal{H} = (\mathcal{X}, E)$. Let $\mathcal{Z} \subseteq \mathcal{X}$ be a set of observed variables. The path $X_1 \ldots X_k$ is **active** given \mathcal{Z} if $X_i \notin \mathcal{Z}$ for $1 \leq i \leq k$.

Some active paths given A:
- $D \rightarrow C$
- $C \rightarrow B$
- $D \rightarrow C \rightarrow B$

Some inactive paths given A:
- $D \rightarrow A \rightarrow B$
- $C \rightarrow D \rightarrow A \rightarrow B$
Separation and independencies

Definition

We say that a set of nodes \(Z \) **separates** \(X \) and \(Y \) in \(\mathcal{H} \), denoted \(\text{sep}_\mathcal{H}(X;Y \mid Z) \), if there is no active path given \(Z \) between any node in \(X \) and any node in \(Y \). We associate with \(\mathcal{H} \) the following set of independencies:

\[
\mathcal{I}(\mathcal{H}) = \{ (X \perp Y \mid Z) : \text{sep}_\mathcal{H}(X;Y \mid Z) \}
\]

- \(\emptyset \) does not separate any nodes
- \(\{ A \} \) does not separate any nodes
- \(\{ A, C \} \) separates \(\{ B \} \) and \(\{ D \} \)
- \(\{ A, B, C \} \) does not separate any nodes

\[
\mathcal{I}(\mathcal{H}) = \{ (B \perp D \mid A, C), (D \perp B \mid A, C), (A \perp C \mid B, D), (C \perp A \mid B, D) \}
\]
Example: Naive Bayes Assumption

- Naive Bayes assumption can be represented by a Markov network
- Consider features X_1, \ldots, X_D and label Y

\[H_{\text{NBA}} = \]

\[Y \]
\[X_1 \quad X_2 \quad X_3 \quad \cdots \quad X_D \]

- Which conditional independence statements are associated?
 - Path from each X_i to Y cannot be blocked
 - No (un)conditional independence between any X_i and Y
 - Y blocks all paths between pairs of features
 - $X_i \perp X_j \mid Y$ for all $i \neq j$
 - Y blocks all paths between sets of features
 - $X_i \perp X_j \mid Y, X_k$ for all disjoint $X_i, X_j, X_k \subset \{X_1, \ldots, X_D\}$

- Thus: Naive Bayes Assumptions \equiv cond. independence statements associated with H_{NBA}
Example: Lifting the Naive Bayes Assumption

\[H_{\text{NBA}} = \]

\[\begin{align*}
X_1 & \\
X_2 & \\
X_3 & \\
\vdots & \\
X_D &
\end{align*} \]

- Suppose \(X_2 = \text{BodyHeight}, \ X_3 = \text{ShoeSize}, \) and \(Y = \text{HairColor} \)
 - Clearly not conditionally independent
 - Different graphs can express this

E.g., via direct dependency

E.g., via latent variable
Markov network graphs concisely express (certain) conditional independence statements.

The graph itself says nothing else, however, about the joint distribution of the variables. Many distributions may satisfy the conditional independence statements.

A Markov network over a Markov network graph \mathcal{H} is a joint distribution P over all variables in which all conditional independence statements associated with \mathcal{H} hold. It can often be specified compactly via a set of local factors.
Outline

1. Introduction to Graphical Models
2. Preliminaries
3. Markov Network Graphs
4. Markov Networks
5. Log-Linear Models
6. Inference
7. Summary
Local models

Definition

Let \mathcal{D} be a set of random variables. A factor ϕ is a function from $\text{Val}(\mathcal{D}) \rightarrow \mathbb{R}^+$. The set \mathcal{D} is called the scope of the factor and is denoted $\text{Scope}[\phi]$.

<table>
<thead>
<tr>
<th>ϕ_1</th>
<th>ϕ_2</th>
<th>ϕ_3</th>
<th>ϕ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^0</td>
<td>b^0</td>
<td>30</td>
<td>d^0</td>
</tr>
<tr>
<td>a^0</td>
<td>b^1</td>
<td>5</td>
<td>b^0</td>
</tr>
<tr>
<td>a^1</td>
<td>b^0</td>
<td>1</td>
<td>b^0</td>
</tr>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>10</td>
<td>b^1</td>
</tr>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>10</td>
<td>b^1</td>
</tr>
</tbody>
</table>

- Factors describe “compatibility” between values (not normalized)
- ϕ_1: More “weight” when A and B agree than when they disagree
- ϕ_1: More weight when A and B are both right than when both are wrong
- ϕ_1: If they disagree, more weight when A is right than when B is right
Combining local models

Definition

Let \mathcal{X}, \mathcal{Y}, \mathcal{Z} be three disjoint sets of random variables and let $\phi_1(\mathcal{X}, \mathcal{Y})$ and $\phi_2(\mathcal{Y}, \mathcal{Z})$ be two factors. The factor product $\psi = \phi_1 \times \phi_2$ is given by the factor $\psi : \text{Val}(\mathcal{X}, \mathcal{Y}, \mathcal{Z}) \rightarrow \mathbb{R}^+$ with

$$\psi(\mathcal{X}, \mathcal{Y}, \mathcal{Z}) = \phi_1(\mathcal{X}, \mathcal{Y}) \cdot \phi_2(\mathcal{Y}, \mathcal{Z}).$$

Factor products combine local models by “joining” factors on the common part \mathcal{Y}.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>ϕ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^0</td>
<td>b^0</td>
<td>30</td>
</tr>
<tr>
<td>a^0</td>
<td>b^1</td>
<td>5</td>
</tr>
<tr>
<td>a^1</td>
<td>b^0</td>
<td>1</td>
</tr>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
<th>ϕ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>b^0</td>
<td>c^0</td>
<td>100</td>
</tr>
<tr>
<td>b^0</td>
<td>c^1</td>
<td>1</td>
</tr>
<tr>
<td>b^1</td>
<td>c^0</td>
<td>1</td>
</tr>
<tr>
<td>b^1</td>
<td>c^1</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^0</td>
<td>b^0</td>
<td>c^0</td>
<td>3000</td>
</tr>
<tr>
<td>a^0</td>
<td>b^0</td>
<td>c^1</td>
<td>30</td>
</tr>
<tr>
<td>a^0</td>
<td>b^1</td>
<td>c^0</td>
<td>5</td>
</tr>
<tr>
<td>a^0</td>
<td>b^1</td>
<td>c^1</td>
<td>500</td>
</tr>
<tr>
<td>a^1</td>
<td>b^0</td>
<td>c^0</td>
<td>100</td>
</tr>
<tr>
<td>a^1</td>
<td>b^0</td>
<td>c^1</td>
<td>10</td>
</tr>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>c^0</td>
<td>1000</td>
</tr>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>c^1</td>
<td>1000</td>
</tr>
</tbody>
</table>
Factor products and the product rule

Recall the product rule of probability

\[P(\mathcal{X}, \mathcal{Y}) = P(\mathcal{Y}) P(\mathcal{X} | \mathcal{Y}) . \]

<table>
<thead>
<tr>
<th>MusclePain</th>
<th>Flu</th>
<th>MusclePain</th>
<th>Flu, MusclePain</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>P</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>Yes</td>
<td>0.1</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>0.9</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

- Set \(\phi_1(\text{MusclePain}) = P(\text{MusclePain}) \)
- Set \(\phi_2(\text{MusclePain}, \text{Flu}) = P(\text{Flu} | \text{MusclePain}) \)
- Set \(\psi(\text{MusclePain}, \text{Flu}) = P(\text{MusclePain}, \text{Flu}) \)
- Then \(\psi = \phi_1 \times \phi_2 \)

Factor products generalize the product rule of probability.
Factored distribution

Definition

A **factored distribution** $P_{\mathcal{F}}$ is a distribution specified in terms of a set of factors $\mathcal{F} = \{ \phi_1(\mathcal{X}_1), \ldots, \phi_m(\mathcal{X}_m) \}$ such that

$$P_{\mathcal{F}}(\mathcal{X}) = \frac{1}{Z} \tilde{P}_{\mathcal{F}}(\mathcal{X})$$

$$\tilde{P}_{\mathcal{F}}(\mathcal{X}) = \phi_1(\mathcal{X}_1) \times \phi_2(\mathcal{X}_2) \times \cdots \times \phi_m(\mathcal{X}_m)$$

$$Z = \sum_{x \in \text{Val}(\mathcal{X})} \tilde{P}_{\mathcal{F}}(x)$$

Here, $\tilde{P}_{\mathcal{F}}(\mathcal{X})$ is an **unnormalized measure** and Z a normalizing constant called the **partitioning function**.

- Factors *contribute* to the overall joint distribution
- Contributions from *all* factors determine joint distribution
- Distribution is **positive** if all factors have range $\mathbb{R}^+ \setminus \{0\}$
- x is sometimes called a **possible world**
A factored distribution for Misconception example

![Graph](image)

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
<th>(\tilde{P})</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0)</td>
<td>(b_0)</td>
<td>(c_0)</td>
<td>(d_0)</td>
<td>300,000</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_0)</td>
<td>(c_0)</td>
<td>(d_1)</td>
<td>300,000</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_0)</td>
<td>(c_1)</td>
<td>(d_0)</td>
<td>300,000</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_0)</td>
<td>(c_1)</td>
<td>(d_1)</td>
<td>30</td>
<td>(4.1 \cdot 10^{-6})</td>
<td></td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_1)</td>
<td>(c_0)</td>
<td>(d_0)</td>
<td>500</td>
<td>(6.9 \cdot 10^{-5})</td>
<td></td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_1)</td>
<td>(c_0)</td>
<td>(d_1)</td>
<td>500</td>
<td>(6.9 \cdot 10^{-5})</td>
<td></td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_1)</td>
<td>(c_1)</td>
<td>(d_0)</td>
<td>5,000,000</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_1)</td>
<td>(c_1)</td>
<td>(d_1)</td>
<td>500</td>
<td>(6.9 \cdot 10^{-5})</td>
<td></td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_0)</td>
<td>(c_0)</td>
<td>(d_0)</td>
<td>100</td>
<td>(1.4 \cdot 10^{-5})</td>
<td></td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_0)</td>
<td>(c_0)</td>
<td>(d_1)</td>
<td>1,000,000</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_0)</td>
<td>(c_1)</td>
<td>(d_0)</td>
<td>100</td>
<td>(1.4 \cdot 10^{-5})</td>
<td></td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_0)</td>
<td>(c_1)</td>
<td>(d_1)</td>
<td>100</td>
<td>(1.4 \cdot 10^{-5})</td>
<td></td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>(c_0)</td>
<td>(d_0)</td>
<td>100,000</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>(c_0)</td>
<td>(d_1)</td>
<td>100,000</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>(c_1)</td>
<td>(d_0)</td>
<td>100,000</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>(c_1)</td>
<td>(d_1)</td>
<td>100,000</td>
<td>0.014</td>
<td></td>
</tr>
</tbody>
</table>

\(Z = 7,201,840\)
Factors, graphs, and factor graphs

Definition

A set of factors \(\mathcal{F} = \{ \phi_1(x_1), \ldots, \phi_m(x_m) \} \) is consistent with a Markov network graph \(\mathcal{H} \) if each \(x_i \) is a complete subgraph of \(\mathcal{H} \). The factors \(\phi_i \) are often called clique potentials.

- \(\mathcal{F}_1 = \{ \phi_1(A, B), \phi_2(B, C), \phi_3(C, D), \phi_4(D, A) \} \)
- \(\mathcal{F}_2 = \{ \psi_1(A, B, D), \psi_2(B, C) \} \)
- \(\mathcal{F}_1 \) is consistent with both \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \)
- \(\mathcal{F}_2 \) is consistent with only \(\mathcal{H}_2 \)
Factorization and Markov networks (1)

Definition

A distribution P over the variables in \mathcal{H} **factorizes** over \mathcal{H} if it can be expressed as a factored distribution such that the set of factors is consistent with \mathcal{H}.

- Thus we can specify the distribution compactly

Definition

A **Markov network** (or **Markov random field**) w.r.t. a graph \mathcal{H} is a distribution P over the variables in \mathcal{H} in which all conditional independence statements associated with \mathcal{H} hold.

- What is the relationship between factorization and Markov networks?
Factorization and Markov networks (2)

Consider a distribution P over the variables of a Markov network graph \mathcal{H}.

Theorem (Soundness \rightarrow)

If P factorizes over \mathcal{H}, then P as a Markov network w.r.t. \mathcal{H}.

Theorem (Hammersley-Clifford theorem, soundness \leftarrow)

Let P be a positive distribution. If P is a Markov network w.r.t. \mathcal{H}, then P factorizes over \mathcal{H}.

Theorem (Completeness)

If \mathcal{X} and \mathcal{Y} are not separated given \mathcal{Z} in \mathcal{H}, then \mathcal{X} and \mathcal{Y} are dependent given \mathcal{Z} for some distribution P that factorizes over \mathcal{H}.
Example: Categorical Naive Bayes

- π and the θ_j’s are factors
- Suppose we have C classes and K_j categories for each feature j
- π is parameterized by a probability vector $\pi \in S_C$
 - $\pi(c) = [\pi]_c$
- θ_j is parameterized by C probability vectors $\theta_{cj} \in S_{K_j}$
 - $\theta_j(c, k) = [\theta_{cj}]_k$
Application: Image denoising

Original

Noisy image

Denoised image

Li and Huttenlocher, ECCV 2008
Named Entity Recognition (NER) labels sequences of words in a text which are the names of things, such as person and company names, or gene and protein names.

- Local evidence often strong clue for label
- Long-range evidence (label consistency) helps when local evidence is insufficient
Application: Knowledge-Based Trust

KBT vs PageRank

- Often sources with low accuracy
- Correlated scores
- Often tail sources with high trustworthiness
Outline

1. Introduction to Graphical Models
2. Preliminaries
3. Markov Network Graphs
4. Markov Networks
5. Log-Linear Models
6. Inference
7. Summary
A log-linear model over a Markov network graph \mathcal{H} is a distribution associated with

- a set of features $\mathcal{F} = \{ f_1(\mathcal{X}_1), \ldots, f_m(\mathcal{X}_m) \}$, where each \mathcal{X}_i is a complete subgraph in \mathcal{H} and $f_i : \mathcal{X}_i \to \mathbb{R}$
- a set of weights w_1, \ldots, w_m

such that

$$P(\mathcal{X}) \propto \exp \left[\sum_{i=1}^{m} w_i f_i(\mathcal{X}_i) \right].$$

The terms $\epsilon_i(\mathcal{X}_i) = -w_i f_i(\mathcal{X}_i)$ are called **energy functions**.

Note: $P(\mathcal{X}) \propto \prod_i \phi_i(\mathcal{X}_i)$ for $\phi_i(\mathcal{X}_i) = \exp(w_i f_i(\mathcal{X}_i)).$
From factors to indicator features

Let \(\mathcal{X} \) be a subset of variables. An **indicator feature** is a function \(f : \mathcal{X} \rightarrow \{0, 1\} \).

Theorem

Every factor of a positive factored distribution on finite discrete variables can be expressed in terms of a linear combination of weighted indicator features.

Proof. Consider a factor \(\phi(X_1, \ldots, X_k) \) on \(k \) finite discrete variables. Let \(\Theta \) be the set of all *assignments* of values to \(X_1, \ldots, X_k \). Set

\[
\begin{align*}
 w_\theta &= \ln \phi(X_1[\theta], \ldots, X_k[\theta]) \\
 f_\theta(X_1, \ldots, X_k) &= \begin{cases}
 1 & \text{if } X_1 = X_1[\theta], \ldots, X_k = X_k[\theta] \\
 0 & \text{otherwise}
 \end{cases} \\
 \ln \phi(X_1, \ldots, X_k) &= \sum_{\theta \in \Theta} w_\theta f_\theta(X_1, \ldots, X_k)
\end{align*}
\]

(constants)
(indicator features)
(decomposition)
From factors to indicator features (example)

Consider three friends with similar interests and let A, B, C be Boolean variables that indicate whether each of the friends likes football.

We have

$$\ln \phi(A, B, C) = \sum_\theta w_\theta f_\theta(A, B, C) = 2.3 \cdot f_{FFF}(A, B, C) + 2.3 \cdot f_{TTT}(A, B, C).$$

Even more compact: $\ln \phi(A, B, C) = 2.3 \cdot I_{ABC \lor \neg A \lor B \lor \neg C}$.
Markov networks and log-linear models with indicator features

Theorem

Consider a positive distribution P on finite discrete variables. Then P is a Markov network w.r.t. \mathcal{H} if and only if P can be expressed as a log-linear model over \mathcal{H} using only indicator features.

Proof (\Rightarrow).

$$ P(\mathcal{X}) = \frac{1}{Z} \prod_{i=1}^{m} \phi_i(\mathcal{X}_i) $$

$$ = \frac{1}{Z} \exp \left[\sum_{i=1}^{m} \ln \phi_i(\mathcal{X}_i) \right] $$

$$ = \frac{1}{Z} \exp \left[\sum_{i=1}^{m} \sum_{\theta \in \Theta} w_{\theta} f_{i\theta}(\mathcal{X}_i) \right]. $$
Example: Markov Logic Networks (1)

Does Bob smoke?

MLNs learn correlations from structured data, then apply to new data.
Example: Markov Logic Networks (2)

<table>
<thead>
<tr>
<th>Name1</th>
<th>Name2</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna</td>
<td>Bob</td>
<td>Yes</td>
</tr>
<tr>
<td>Bob</td>
<td>Anna</td>
<td>Yes</td>
</tr>
<tr>
<td>Anna</td>
<td>Anna</td>
<td>Yes</td>
</tr>
<tr>
<td>Bob</td>
<td>Bob</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna</td>
<td>Yes</td>
</tr>
<tr>
<td>Anna</td>
<td>No</td>
</tr>
</tbody>
</table>

1.5 \{ \text{Smoking causes cancer} \\
\quad \forall x. \text{Smokes}(x) \implies \text{Cancer}(x) \}

1.1 \{ \text{Friends have similar smoking habits} \\
\quad \forall x. \forall y. \text{Friends}(x, y) \implies (\text{Smokes}(x) \iff \text{Smokes}(y)) \}

Inference result
- $P(\text{Bob smokes}) = 84.6\%$
- $P(\text{Bob has cancer}) = 76.9\%$

<table>
<thead>
<tr>
<th>S(B)</th>
<th>C(B)</th>
<th>#R1</th>
<th>#R2</th>
<th>$\sum w$</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>1</td>
<td>1</td>
<td>2.6</td>
<td>7.7%</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
<td>2.6</td>
<td>7.7%</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>0</td>
<td>3</td>
<td>3.3</td>
<td>15.4%</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>1</td>
<td>3</td>
<td>4.8</td>
<td>69.2%</td>
</tr>
</tbody>
</table>

Richardson and Domingos, 2006.
Outline

1. Introduction to Graphical Models
2. Preliminaries
3. Markov Network Graphs
4. Markov Networks
5. Log-Linear Models
6. Inference
7. Summary
Inference in probabilistic graphical models

- Inference = answer queries

- Recall the queries of interest
 - $e =$ evidence var’s, $Y =$ query var’s, $W =$ latent var’s
 1. Conditional probability query: $P(Y | e)$
 2. Conditional MAP query: $P(W | e)$
 3. Conditional marginal MAP query: $P(Y | e)$

- These queries are often difficult to answer

- How difficult?
 - Let $P_{\mathcal{F}}$ be a Markov network over variables $\{X, X_1, \ldots, X_n\}$
 - $P_{\mathcal{F}}$-decision problem: Is $P_{\mathcal{F}}(X = x) > 0$?
 - $P_{\mathcal{F}}$-probability computation problem: What is $P_{\mathcal{F}}(X = x)$?

- Can show
 - $P_{\mathcal{F}}$-decision problem is NP-complete
 - $P_{\mathcal{F}}$-probability computation is $\#P$-hard
Complexity of inference in probabilistic graphical models

Proof (by reduction from 3-SAT and #3-SAT).

- Take a 3-SAT formula \(\Psi = C_1 \land C_2 \land \ldots \land C_m \) over variables \(\mathcal{X} = \{X_1, X_2, \ldots, X_n\} \)

- Consider the following Markov network \(P_{\mathcal{F}} \) over Booleans:

 ![Markov network diagram]

 - Set \(\lor_i(C_i, \mathcal{X}_i) = 1 \) if for assignment \(\mathcal{X}_i \) the truth value of clause \(C_i \) equals variable \(C_i \), else 0; similarly the \(\land \)-factors
 - \(P_{\mathcal{F}} \) can be computed in polynomial time in the size of \(\Psi \)
 - \(P_{\mathcal{F}}(X = T) > 0 \) if and only if \(\Psi \) is satisfiable \(\rightarrow \) NP-complete
 - Now note that \(P(X_i = T) = 1/2 \) and \(P(x) = 1/2^n \)
 - \(P_{\mathcal{F}}(X = T) = \#\Psi/2^n \rightarrow \#P\)-hard
Inference

- Many methods exist
- Exact inference
 - Naive
 - Variable elimination
 - Clique trees
 - Special methods for certain models
 - ...
- Approximate inference
 - Loopy belief propagation
 - Variational inference
 - Sampling methods
 - ...
- Here we briefly introduce the red algorithms for Boolean variables
Naive approach

Exponential in number of variables!

<p>| |
| |</p>
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>(\tilde{P})</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0)</td>
<td>(b_0)</td>
<td>(c_0)</td>
<td>(d_0)</td>
<td>300,000</td>
<td>0.04</td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_0)</td>
<td>(c_0)</td>
<td>(d_1)</td>
<td>300,000</td>
<td>0.04</td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_0)</td>
<td>(c_1)</td>
<td>(d_0)</td>
<td>300,000</td>
<td>0.04</td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_0)</td>
<td>(c_1)</td>
<td>(d_1)</td>
<td>30</td>
<td>4.1 (\cdot 10^{-6})</td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_1)</td>
<td>(c_0)</td>
<td>(d_0)</td>
<td>500</td>
<td>6.9 (\cdot 10^{-5})</td>
</tr>
<tr>
<td>(a_0)</td>
<td>(b_1)</td>
<td>(c_0)</td>
<td>(d_1)</td>
<td>500</td>
<td>6.9 (\cdot 10^{-5})</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_0)</td>
<td>(c_0)</td>
<td>(d_0)</td>
<td>100</td>
<td>1.4 (\cdot 10^{-5})</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_0)</td>
<td>(c_0)</td>
<td>(d_1)</td>
<td>1,000,000</td>
<td>0.14</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_0)</td>
<td>(c_1)</td>
<td>(d_0)</td>
<td>100</td>
<td>1.4 (\cdot 10^{-5})</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_0)</td>
<td>(c_1)</td>
<td>(d_1)</td>
<td>100</td>
<td>1.4 (\cdot 10^{-6})</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>(c_0)</td>
<td>(d_0)</td>
<td>100,000</td>
<td>0.014</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>(c_0)</td>
<td>(d_1)</td>
<td>100,000</td>
<td>0.014</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>(c_1)</td>
<td>(d_0)</td>
<td>100,000</td>
<td>0.014</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(b_1)</td>
<td>(c_1)</td>
<td>(d_1)</td>
<td>100,000</td>
<td>0.014</td>
</tr>
</tbody>
</table>

\[Z = 7,201,840 \]
Variable elimination (idea)

Goal: Eliminate non-query variables from the graph. E.g., B:

ϕ_1:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^0</td>
<td>b^0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>a^0</td>
<td>b^1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>b^0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

ϕ_2:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>b^0</td>
<td>c^0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>b^0</td>
<td>c^1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b^1</td>
<td>c^0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b^1</td>
<td>c^1</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

ϕ_3:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>c^0</td>
<td>d^0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c^0</td>
<td>d^1</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>c^1</td>
<td>d^0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>c^1</td>
<td>d^1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

ϕ_4:

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>A</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>d^0</td>
<td>a^0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>d^0</td>
<td>a^1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>d^1</td>
<td>a^0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>d^1</td>
<td>a^1</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

$\phi_1 \times \phi_2$:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^0</td>
<td>b^0</td>
<td>c^0</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>a^0</td>
<td>b^0</td>
<td>c^1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>a^0</td>
<td>b^1</td>
<td>c^0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>a^0</td>
<td>b^1</td>
<td>c^1</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>b^0</td>
<td>c^0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>b^0</td>
<td>c^1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>c^0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>b^1</td>
<td>c^1</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

ϕ_{12}:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^0</td>
<td>c^0</td>
<td>3005</td>
<td></td>
</tr>
<tr>
<td>a^0</td>
<td>c^1</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>c^0</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>a^1</td>
<td>c^1</td>
<td>1001</td>
<td></td>
</tr>
</tbody>
</table>

B has been eliminated (“margin-alized out”). The resulting factor graph represents $P(A, C, D)$.
Variable elimination (why it works)

- In a nutshell, to eliminate X
 - Compute factor products, marginalize out X
 - If X is observed, fix its value while computing the factor product
 (in practice: often no need to eliminate observed variables)

Recall that

$$P(A, B, C, D) = \frac{1}{Z} \phi_1(A, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(D, A)$$

and thus

$$P(A, C, D) = P(A, b^0, C, D) + P(A, b^1, C, D)$$

$$= \frac{1}{Z} \left[\phi_1(A, b^0) \times \phi_2(b^0, C) \times \phi_3(C, D) \times \phi_4(D, A) \
+ \phi_1(A, b^1) \times \phi_2(b^1, C) \times \phi_3(C, D) \times \phi_4(D, A) \right]$$

$$= \frac{1}{Z} \left[\left\{ \sum_{b \in \{b^0, b^1\}} \phi_1(A, b) \times \phi_2(b, C) \right\} \times \phi_3(C, D) \times \phi_4(D, A) \right]$$

$$= \frac{1}{Z} \left[\phi_{12}(A, C) \times \phi_3(C, D) \times \phi_4(D, A) \right]$$
Variable elimination (remarks)

- Also called sum-product variable elimination

- Whenever we eliminate a variable B
 - We remove all factors connected to B
 - We introduce a single factor that is connected to the neighbors of B
 - If B has k Boolean neighbors, the new factor has 2^k rows
 - Potentially exponential blow-up

- Computational cost
 - Dominated by sizes of intermediate factors
 - Depends strongly on elimination ordering
 - NP-hard to find optimal ordering
 - Lots of useful heuristics exist
 - “Conditioning” can be used to avoid large factors for increased processing time

- Similar observations give rise to other algorithms, e.g., message passing in clique trees
Sampling methods

- Also called or **particle-based approximate inference**
- Idea: Obtain samples from the distribution underlying the graphical model
- If samples were independent, we could count how often each variable is true/false → very good approximation
- But independent sampling is difficult in Markov networks
 - Easier to generate dependent samples
 - Goal is to minimize the dependencies
 - Generally, more samples needed than if samples were independent
 - If dependencies vanish between far-apart samples, approach is correct and converges
- Many techniques
 - Forward sampling (for directed models)
 - Likelihood weighting
 - Importance sampling
 - **Gibbs sampling** and other Markov Chain Monte Carlo (MCMC) methods
 - Collapsed particles
 - ...
Gibbs sampling (idea)

Gibbs sampling is a simple algorithm to sample from $P(X, Y)$. It is used when it is hard to sample from $P(X, Y)$, but easy to sample from $P(X | Y)$ and $P(Y | X)$.

1. Pick an initial point (x_0, y_0)
2. For $n = 1, 2, \ldots$
 2.1 Generate $x_n \sim P(X | Y = y_{n-1})$

\[n = 1 \]
Gibbs sampling (idea)

Gibbs sampling is a simple algorithm to sample from $P(X, Y)$. It is used when it is hard to sample from $P(X, Y)$, but easy to sample from $P(X \mid Y)$ and $P(Y \mid X)$.

1. Pick an initial point (x_0, y_0)
2. For $n = 1, 2, \ldots$
 2.1 Generate $x_n \sim P(X \mid Y = y_{n-1})$
 2.2 Generate $y_n \sim P(Y \mid X = x_n)$

$n = 15$

$n = 500$
Gibbs sampling for Markov networks

Recall that
\[
P(A, B, C, D) = \frac{1}{Z} \phi_1(A, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(D, A).
\]

Sampling from \(P(A, B, C, D)\) is hard but sampling from
\[
P(A \mid B, C, D) = \frac{P(A, B, C, D)}{P(B, C, D)}
\]
\[
= \frac{1}{Z} \left[\phi_1(A, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(D, A) \right]
\]
\[
= \frac{1}{Z} \sum_{a \in \{a^0, a^1\}} \left[\phi_1(a, B) \times \phi_2(B, C) \times \phi_3(C, D) \times \phi_4(D, a) \right]
\]
\[
= \frac{\phi_1(A, B) \times \phi_4(D, A)}{\sum_{a \in \{a^0, a^1\}} \phi_1(a, B) \times \phi_4(D, a)}
\]
is easy. Only the factors connected to \(A\) remain.

When resampling a variable \(A\), we only have to look at the factors connected to \(A\), and thus only the subset of variables connected to \(A\). These variables are called the Markov blanket of \(A\).
Gibbs sampling for Markov networks (remarks)

- Variables are picked according to a **schedule**
 - sequential, random, ...
- An instance of the more general class of MCMC methods
 - Markov chains describe how the sampling process moves through the set of worlds
 - Irreducible if all worlds can be reached from all other worlds
 - Convergence speed depends on how fast the sampling process moves (*mixing time*)

<table>
<thead>
<tr>
<th>World</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibbs sampling works well (fast mixing)</td>
<td></td>
</tr>
<tr>
<td>Gibbs sampling works reasonable (slow mixing)</td>
<td></td>
</tr>
<tr>
<td>Gibbs sampling does not work (not irreducible)</td>
<td></td>
</tr>
</tbody>
</table>

- MCMC methods can perform “bigger” steps than Gibbs sampling; they change multiple variables simultaneously.
Outline

1. Introduction to Graphical Models
2. Preliminaries
3. Markov Network Graphs
4. Markov Networks
5. Log-Linear Models
6. Inference
7. Summary
Lessons learned

- Probabilistic graphical models
 - Describe and reason about distributions and conditional independencies
 - Exploit locality structure
 - Main components: representation, inference, learning

- Markov networks
 - Undirected graphical models
 - Markov network graph compactly encodes set of conditional independencies
 - In any distribution that factorizes over the graph, these conditional independencies hold

- Inference
 - \#P-hard in general
 - Exact methods for probability computation often expensive, but they can work well on certain models
 - Particle-based inference is one common approximate method
 - Gibbs sampling is the perhaps simplest MCMC method
 - Resample one variable at a time
Suggested reading

- Murphy
 Chapter 19: Undirected Graphical Models

- Daphne Koller, Nir Friedman
 Chapter 4: Undirected Graphical Models