LASH: Large-Scale Sequence Mining with Hierarchies

Kaustubh Beedkar and Rainer Gemulla

Data and Web Science Group
University of Mannheim

June 2nd, 2015
SIGMOD 2015
Syntactic Explorer (Verb to Verb Noun)

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>want to do something</td>
<td>2152</td>
</tr>
<tr>
<td>have to do something</td>
<td>2103</td>
</tr>
<tr>
<td>authorize to seek contribution</td>
<td>1103</td>
</tr>
<tr>
<td>want to be part</td>
<td>1082</td>
</tr>
<tr>
<td>be to take place</td>
<td>1027</td>
</tr>
<tr>
<td>decline to comment yesterday</td>
<td>1011</td>
</tr>
<tr>
<td>try to do something</td>
<td>932</td>
</tr>
<tr>
<td>want to go home</td>
<td>675</td>
</tr>
<tr>
<td>try to take advantage</td>
<td>634</td>
</tr>
<tr>
<td>want to do anything</td>
<td>632</td>
</tr>
<tr>
<td>have to take care</td>
<td>623</td>
</tr>
<tr>
<td>refuse to answer question</td>
<td>618</td>
</tr>
<tr>
<td>expect to announce today</td>
<td>597</td>
</tr>
<tr>
<td>go to do something</td>
<td>594</td>
</tr>
<tr>
<td>adjust to represent sale</td>
<td>590</td>
</tr>
<tr>
<td>weight to represent sale</td>
<td>563</td>
</tr>
<tr>
<td>go to do anything</td>
<td>552</td>
</tr>
</tbody>
</table>
Sequence Mining

- Goal: Discover subsequences as patterns in sequence data
- Input: Collection of sequences of items, e.g.,
 - Text collection (sequence of words)
 - Customer transactions (sequence of products)
Sequence Mining

• Goal: Discover subsequences as patterns in sequence data

• Input: Collection of sequences of items, e.g.,
 ▶ Text collection (sequence of words)
 ▶ Customer transactions (sequence of products)

• Output: subsequences that
 ▶ occur in σ input sequences (frequency threshold)
 ▶ have length at most λ (length threshold)
 ▶ have gap γ (contiguous subsequences or non-contiguous subsequences)
Sequence Mining

- **Goal:** Discover subsequences as patterns in sequence data

- **Input:** Collection of sequences of items, e.g.,
 - Text collection (sequence of words)
 - Customer transactions (sequence of products)

- **Output:** subsequences that
 - occur in σ input sequences (frequency threshold)
 - have length at most λ (length threshold)
 - have gap γ (contiguous subsequences or non-contiguous subsequences)

- **Example:**
 - S_1: Anna lives in Melbourne
 - S_2: Bob lives in the city of Berlin
 - S_3: Charlie likes London
Sequence Mining

• Goal: Discover subsequences as patterns in sequence data

• Input: Collection of sequences of items, e.g.,
 ▶ Text collection (sequence of words)
 ▶ Customer transactions (sequence of products)

• Output: subsequences that
 ▶ occur in σ input sequences (frequency threshold)
 ▶ have length at most λ (length threshold)
 ▶ have gap γ (contiguous subsequences or non-contiguous subsequences)

• Example:
 S_1: Anna lives in Melbourne
 S_2: Bob lives in the city of Berlin
 S_3: Charlie likes London
 ▶ Subsequence: lives in
 $\sigma = 2$, $\lambda = 2$, $\gamma = 0$
Hierarchies

Items can be naturally arranged in a hierarchy, e.g.,
Hierarchies

Items can be naturally arranged in a hierarchy, e.g.,

Syntactic hierarchy
Hierarchies

Items can be naturally arranged in a hierarchy, e.g.,

Syntactic hierarchy

Semantic hierarchy
Hierarchies

Items can be naturally arranged in a hierarchy, e.g.,

Syntactic hierarchy

- DET
 - a
 - an
 - the

Semantic hierarchy

- PERSON
 - Scientist
 - Politician
 - Barack Obama
 - Melbourne

- Photography

Product hierarchy

- DSLR Camera
 - Cannon5D
 - Nikon5100

- Tripod
Sequence Mining with Hierarchies

- Item hierarchies are specifically taken into account
- Discover **non-trivial** patterns
Sequence Mining with Hierarchies

• Item hierarchies are specifically taken into account
• Discover \textbf{non-trivial} patterns
• Example
 \(S_1\): Anna lives in Melbourne
 \(S_2\): Bob lives in the city of Berlin
 \(S_3\): Charlie likes London
Sequence Mining with Hierarchies

- Item hierarchies are specifically taken into account
- Discover non-trivial patterns

Example
- S_1: Anna lives in Melbourne
- S_2: Bob lives in the city of Berlin
- S_3: Charlie likes London
Sequence Mining with Hierarchies

- Item hierarchies are specifically taken into account
- Discover non-trivial patterns

Example

\[S_1: \text{Anna lives in Melbourne} \]
\[S_2: \text{Bob lives in the city of Berlin} \]
\[S_3: \text{Charlie likes London} \]

- Generalized subsequence:
 \[\text{PERSON lives in CITY} \]
 \[\sigma = 2, \lambda = 4, \gamma = 3 \]
Sequence Mining with Hierarchies

Applications

• Linguistic patterns, e.g.,
 ▶ read DET book
 ▶ NNP lives in NNP

• Information extraction, e.g.,
 ▶ PERSON lives in CITY

• Market-basket analysis, e.g,
 ▶ buy DSLR camera → photography book → flash

• Web-usage mining

• ...

LASH

- Distributed framework for sequence mining with hierarchies
- Built over MapReduce for large-scale data processing
- Map (Partitioning)
 - Divide data into potentially overlapping partitions
- Reduce (mining)
 - Partitions are mined independently
- No global post-processing

\[\text{Hierarchy-aware item-based partitioning} \]

\[D \rightarrow H \]

\[D_1 \rightarrow H_1 \]
\[D_2 \rightarrow H_2 \]
\[\ldots \]
\[D_n \rightarrow H_n \]

\[F_1 \rightarrow \text{Local mining} \]
\[F_2 \rightarrow \text{Local mining} \]
\[\ldots \]
\[F_n \rightarrow \text{Local mining} \]

\[F \]
Outline

1. Introduction
2. Partitioning
3. Local Mining
4. Evaluation
5. Conclusion
Item-based Partitioning

Items are ordered by decreasing frequency, e.g., $a < b < c < \cdots < k$.

Create a partition for each frequent item called pivot item.

Key idea: partition the output space.

- $a \triangleleft H_1$
- $b \triangleleft H_2$
- $c \triangleleft \cdots$
- $k \triangleleft H_n$

Hierarchy-aware item-based partitioning

D for each pivot item

- Reduces communication
- Reduces computation
- Reduces skew

Hierarchy-aware item-based partitioning

$D_1 \rightarrow H_1 \rightarrow D_2 \rightarrow H_2 \rightarrow \cdots \rightarrow D_n \rightarrow H_n$

Local mining

$F_1 \rightarrow F_2 \rightarrow \cdots \rightarrow F_n$

F_a: Filter a but not b, ..., k

F_b: Filter b but not c, ..., k

F_k: Filter k

F
Item-based Partitioning

- Items are ordered by decreasing frequency, e.g., \(a < b < c < \cdots < k \)

![Diagram of item-based partitioning]

- Items are ordered by decreasing frequency, e.g., \(a < b < c < \cdots < k \)
- Create a partition for each frequent item called *pivot item*
- Key idea: partition the output space
- Rewrite \(D \) for each pivot item
 - Reduces communication
 - Reduces computation
 - Reduces skew
Item-based Partitioning

- Items are ordered by decreasing frequency, e.g., \(a < b < c < \cdots < k \)
- Create a partition for each frequent item called **pivot item**

Hierarchy-aware item-based partitioning

\[D \overset{H}{\longrightarrow} F_a: \text{Filter } a \text{ but not } b, \ldots, k \]
\[D_1 \overset{H_1}{\longrightarrow} F_1 \]
\[D_2 \overset{H_2}{\longrightarrow} F_2 \]
\[\cdots \]
\[D_n \overset{H_n}{\longrightarrow} F_n \]
\[F \]

\[F_b: \text{Filter } b \text{ but not } c, \ldots, k \]

\[F_k: \text{Filter } k \]
Item-based Partitioning

- Items are ordered by decreasing frequency, e.g., \(a < b < c < \cdots < k \)
- Create a partition for each frequent item called **pivot item**
- Key idea: partition the output space
 - \(a < b < c < \cdots < k \)
 - Reduces communication
 - Reduces computation
 - Reduces skew

Hierarchy-aware item-based partitioning

Local mining

\(F_a: \) Filter a but not b,...,k
\(F_b: \) Filter b but not c,...,k
\(F_k: \) Filter k

Kaustubh Beedkar and Rainer Gemulla
Item-based Partitioning

- Items are ordered by decreasing frequency, e.g., \(a < b < c < \cdots < k \)
- Create a partition for each frequent item called **pivot item**
- Key idea: partition the output space
 - \(a < b < c < \cdots < k \)
 - \(F_a \)
 - \(F_b \)
 - \(F_c \)
 - \(F_k \)
- Rewrite \(D \) for each pivot item
 - Reduces communication
 - Reduces computation
 - Reduces skew
Item-based Partitioning

Example ($\sigma = 2, \gamma = 3, \lambda = 4$)

S_1: Anna lives in Melbourne
S_2: Bob lives in the city of Berlin
S_3: Charlie likes London

Semantic hierarchy
Item-based Partitioning

Example \((\sigma = 2, \gamma = 3, \lambda = 4)\)

\(S_1:\) Anna lives in Melbourne
\(S_2:\) Bob lives in the city of Berlin
\(S_3:\) Charlie likes London

Semantic hierarchy

- **PERSON** < **CITY** < in < lives
Item-based Partitioning

Example ($\sigma = 2, \gamma = 3, \lambda = 4$)

S_1: Anna lives in Melbourne
S_2: Bob lives in the city of Berlin
S_3: Charlie likes London

Semantic hierarchy

- PERSON < CITY < in < lives
Item-based Partitioning

Example ($\sigma = 2, \gamma = 3, \lambda = 4$)

S_1: Anna lives in Melbourne
S_2: Bob lives in the city of Berlin
S_3: Charlie likes London

Semantic hierarchy

- PERSON < CITY < in < lives
Item-based Partitioning

Example ($\sigma = 2, \gamma = 3, \lambda = 4$)

S_1: Anna lives in Melbourne

S_2: Bob lives in the city of Berlin

S_3: Charlie likes London

Semantic hierarchy

- PERSON < CITY < in < lives
Item-based Partitioning

Example ($\sigma = 2, \gamma = 3, \lambda = 4$)

S_1: Anna lives in Melbourne
S_2: Bob lives in the city of Berlin
S_3: Charlie likes London

Semantic hierarchy

- **PERSON** < **CITY** < **in** < **lives**
Outline

1. Introduction
2. Partitioning
3. Local Mining
4. Evaluation
5. Conclusion
Local Mining

- Goal: Compute **pivot sequences**
- \(a < b < c < \cdots < k \)

\(F_a \)
\(F_b \)
\(F_c \)
\(F_k \)

Hierarchy-aware item-based partitioning

\(D \)
\(H \)

\(D_1 \)
\(H_1 \)

\(D_2 \)
\(H_2 \)

\(\ldots \)

\(D_n \)
\(H_n \)

Local mining

\(F_1 \)

\(F_2 \)

\(\ldots \)

\(F_n \)

\(F \)

\(F_a: \) Filter a but not b,...,k

\(F_b: \) Filter b but not c,...,k

\(F_k: \) Filter k
Local Mining

- Traditional approach
 - Use any mining algorithm (based on depth-first or breadth-first search)
 - Filter out non-pivot sequences

- Example: depth-first search
 - Pivot item: e
Local Mining

- **Pivot sequence miner (PSM)**
 - Mines only pivot sequences
 - Start with the pivot item
 - **Right expansions**
 - **Left expansions**
 - Optimized search space exploration

- **Example: PSM search space**
 - Pivot item: e

![Diagram](image)
Outline

1 Introduction
2 Partitioning
3 Local Mining
4 Evaluation
5 Conclusion
Overall Runtime

The New York Times Corpus

• ~50M sequences, ~1B items of which ~2.7M distinct
• Syntactic hierarchy (word → lowercase → lemma → POS tag)
• 10 node hadoop cluster

LASH is multiple orders of magnitude faster
Local Mining

PSM is effective, more than $3 \times$ faster
Scalability

(a) Strong Scalability

(b) Weak Scalability

Good strong and weak scalability
Outline

1 Introduction
2 Partitioning
3 Local Mining
4 Evaluation
5 Conclusion
Summary and Contributions

• Sequence mining with hierarchies is an important problem
 ▶ Enables mining non-trivial patterns
Summary and Contributions

- Sequence mining with hierarchies is an important problem
 - Enables mining non-trivial patterns

- LASH: **LArge-scale Sequence mining with Hierarchies**
 - Novel hierarchy-aware form of item-based partitioning
 - Efficient special-purpose algorithm for mining each partition
Summary and Contributions

• Sequence mining with hierarchies is an important problem
 ▶ Enables mining non-trivial patterns

• LASH: LArge-scale Sequence mining with Hierarchies
 ▶ Novel hierarchy-aware form of item-based partitioning
 ▶ Efficient special-purpose algorithm for mining each partition

• First distributed, scalable algorithm to mine such sequences
Summary and Contributions

• Sequence mining with hierarchies is an important problem
 ▶ Enables mining non-trivial patterns

• LASH: LArge-scale Sequence mining with Hierarchies
 ▶ Novel hierarchy-aware form of item-based partitioning
 ▶ Efficient special-purpose algorithm for mining each partition

• First distributed, scalable algorithm to mine such sequences

Thank you!
Questions? / Comments