Semantic Web Technologies
Resource Description Framework (RDF)

Heiko Paulheim
here be dragons...

Semantic Web Technologies
(This lecture)

Technical Foundations

Berners-Lee (2009): Semantic Web and Linked Data
Overview

• A brief history of RDF
• Encodings of RDF
• Semantics and principles of RDF
• Embedding RDF in HTML – RDFa, Microdata, Microformats
• RDF Tools
• Examples for RDF in the wild
History: Metadata on the Web

• Goal: more effective rating and ranking of web contents, e.g., by search engines

• Who has created this page?
• When has it been changed the last time?
• What is its topic?
• Which is the content's license?
• How does it relate to other pages?
Metadata on the Web: Dublin Core

- Developed in 1995 at a workshop in Dublin, Ohio
- 15 predefined tags
- A widely accepted standard (ISO 15836:2009)

- May be embedded into HTML:

```html
<html>
<head profile="http://dublincore.org/documents/2008/08/04/dc-html/">
    <title>Semantic Web</title>
    <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" />
    <meta name="DC.publisher" content="University of Mannheim" />
    <meta name="DC.subject" content="Semantic Web" />
    <meta name="DC.creator" content="Heiko Paulheim" />
    <meta name="DC.relation" content="http://www.w3.org/2001/sw/" />
    ...
</head>
<body>
    ...
</body>
</html>
```
Metadata on the Web: Dublin Core

- Identifier
- Format
- Type
- Language
- Date
- Title
- Subject
- Coverage
- Description
- Creator
- Publisher
- Contributor
- Rights
- Source
- Relation
What is RDF?

• „Resource Description Framework“
• A W3C standard since 2004
• Description of arbitrary things

• View 1: Sentences in the form <subject, predicate, object>
 „Heiko works for University of Mannheim.“

• View 2: Directed graphs with labeled edges

Heiko works for Uni Mannheim
Basic Building Blocks of RDF

• Resources
 – denote things
 – are identified by a URI
 – can have one or multiple types

• Literals
 – are values like strings or integers
 – can only be objects, not subjects or predicates (graph view: they can only have ingoing edges)
 – can have a datatype or a language tag (but not both)

• Properties (Predicates)
 – Link resources to other resources and to literals
Types

- All resources (not literals) can have a type
- Types can be arbitrarily defined
- The predefined predicate `rdf:type` defines the type of a resource

- Semantic Web is a lecture
Resource vs. Literal

• A literal is an atomic value
 – can only be object
 – i.e., a literal terminates always a graph

http://www.dws.informatik.uni-mannheim.de/sw dc:creator "Heiko Paulheim"

dc:creator

• A resource can be a subject itself

http://www.dws.informatik.uni-mannheim.de/sw dc:creator http://www.dws.informatik.uni-mannheim.de/heiko
Datatypes for Literals

- (Almost) all XML Schema datatypes may be used
- Exception:
 - XML specific types
 - The underspecified type "duration"
 - sequence types

http://www.w3.org/TR/xmlschema-2/
XML Specific Data Types vs. RDF

• XML: Datatypes for ID and IDREF
 <author id="0815">
 <name>Thomas Glavinic</name>
 </author>
 <book>
 <title>Die Arbeit der Nacht</title>
 <author idref="0815"/>
 </book>

• RDF: everything is identified by a URI
 <author rdf:about="http://mylibrary.org/author/Thomas_Glavinic">
 <name>Thomas Glavinic</name>
 </author>
 <title>Die Arbeit der Nacht</title>
 </book>
Language Tags for Literals

• Literals may be defined in different natural languages
 – "München"@de
 – "Munich"@en

• Those can be marked

• Note: the Semantic Web is multilingual!

• Language codes according to ISO 963
 – if both are defined, ISO 963-1 has to be used!

Language Tags for Literals

<table>
<thead>
<tr>
<th>ISO 639-2 Code</th>
<th>ISO 639-1 Code</th>
<th>English name of Language</th>
<th>French name of Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>aar</td>
<td>aa</td>
<td>Afar</td>
<td>afar</td>
</tr>
<tr>
<td>abk</td>
<td>ab</td>
<td>Abkhazian</td>
<td>abkhaze</td>
</tr>
<tr>
<td>aca</td>
<td>aca</td>
<td>Achinese</td>
<td>achen</td>
</tr>
<tr>
<td>ach</td>
<td>ach</td>
<td>Acoli</td>
<td>acoli</td>
</tr>
<tr>
<td>ada</td>
<td>ada</td>
<td>Adangme</td>
<td>adangme</td>
</tr>
<tr>
<td>ady</td>
<td>ady</td>
<td>Adygei; Adygei</td>
<td>adyghé</td>
</tr>
<tr>
<td>afa</td>
<td>afa</td>
<td>Afro-Asiatic languages</td>
<td>afro-asiatiques, langues</td>
</tr>
<tr>
<td>afh</td>
<td>afh</td>
<td>Afhili</td>
<td>afhili</td>
</tr>
<tr>
<td>afr</td>
<td>afr</td>
<td>Afrikaans</td>
<td>afrikaans</td>
</tr>
<tr>
<td>ain</td>
<td>ain</td>
<td>Ainu</td>
<td>ainou</td>
</tr>
<tr>
<td>aka</td>
<td>aka</td>
<td>Akan</td>
<td>akan</td>
</tr>
<tr>
<td>akk</td>
<td>akk</td>
<td>Akkadian</td>
<td>akkadian</td>
</tr>
<tr>
<td>alb (B) sq (T)</td>
<td>sq</td>
<td>Albanian</td>
<td>albanais</td>
</tr>
<tr>
<td>ame</td>
<td>am</td>
<td>Aleut</td>
<td>aleoute</td>
</tr>
<tr>
<td>alg</td>
<td>alg</td>
<td>Algonquian languages</td>
<td>algonquines, langues</td>
</tr>
<tr>
<td>alt</td>
<td>alt</td>
<td>Southern Altai</td>
<td>altai du Sud</td>
</tr>
<tr>
<td>amh</td>
<td>am</td>
<td>Amharic</td>
<td>amharique</td>
</tr>
<tr>
<td>ang</td>
<td>ang</td>
<td>English, Old (ca.450-1100)</td>
<td>anglo-saxon (ca.450-1100)</td>
</tr>
<tr>
<td>angk</td>
<td>angk</td>
<td>Angkia</td>
<td>angika</td>
</tr>
<tr>
<td>apa</td>
<td>apa</td>
<td>Apache languages</td>
<td>apache, langues</td>
</tr>
</tbody>
</table>
Datatypes in RDF

• Examples:
 :Muenchen :hasName "München"@de .
 :Muenchen :hasName "Munich"@en .
 :Muenchen :hasPopulation "1356594 "^^xsd:integer .
 :Muenchen :hasFoundingYear "1158-01-01"^^xsd:date .

• Note: there are no default datatypes (not even “string”!)
• These are three different literals:
 – "München"
 – "München"@de
 – "München"^^xsd:string .
Triple Notation

- Triples consist of a subject, predicate, and object
- An RDF document is an *unordered* set of triples

- **Simple triple:**

  ```
  <http://www.dws.informatik.uni-mannheim.de/teaching/semantic-web>
  <http://purl.org/dc/elements/1.1/relation>
  <http://www.w3.org/2001/sw/> .
  ```

- **Literal with language tag:**

  ```
  <http://www.dws.informatik.uni-mannheim.de/teaching/semantic-web>
  <http://purl.org/dc/elements/1.1/subject>
  "Semantic Web"@en .
  ```

- **Type literal:**

  ```
  <http://www.dws.informatik.uni-mannheim.de/teaching/semantic-web>
  <http://www.uni-mannheim.de/mhb/creditpoints>
  "6"^^<http://www.w3.org/2001/XMLSchema#integer> .
  ```
Turtle Notation

• A simplified triple notation

• Central definition of namespaces (and a default namespace):

 @prefix dc: <http://purl.org/dc/elements/1.1/>
 @prefix : <http://www.dws.informatik.uni-mannheim.de/teaching/>

• Triples sharing the same subject or subject+predicate:

 :semantic-web dc:subject "Semantisches Web"@de ,
 "Semantic Web"@en ;
 dc:creator "Heiko Paulheim".

• Shorthand notation for rdf:type:

 :semantic-web a :lecture .
Notation RDF/XML

- A W3C standard since 2004
- Encodes RDF in XML
- Suitable for machine processing (plenty of XML tools!)

- Defining resources:

 `<rdf:Description rdf:about="http://dws.informatik.uni-mannheim.de/teaching/sw">
 <dc:creator>Heiko Paulheim</dc:creator>
 </rdf:Description>`

- Defining typed resources:

 `<rdf:Description rdf:about="http://dws.informatik.uni-mannheim.de/teaching/sw">
 <rdf:type rdf:resource="http://www.uni-mannheim.de/mhb/Lecture"/>
 </rdf:Description>`

- Alternative representation:

 `<mhb:Lecture rdf:about="http://dws.informatik.uni-mannheim.de/teaching/sw"
 xmlns:mhb="http://www.uni-mannheim.de/mhb/" />`
Notation RDF/XML

• Relations between resources by nesting

```xml
<mhb:Lecture rdf:about="http://dws.informatik.uni-mannheim.de/teaching/sw">
  <mhb:givenBy>
    <mhb:Lecturer rdf:about="http://dws.informatik.uni-mannheim.de/heiko"/>
  </mhb:givenBy>
</mhb:Lecture>
```

• Relations between resources by explicit links

```xml
<mhb:Lecturer rdf:about="http://dws.informatik.uni-mannheim.de/heiko"/>
<mhb:Lecture rdf:about="http://dws.informatik.uni-mannheim.de/teaching/sw">
  <mhb:givenBy rdf:resource="http://dws.informatik.uni-mannheim.de/heiko"/>
</mhb:Lecture>
```
Notation RDF/XML

- An RDF graph may contain cycles
- XML may not → explicit links are necessary

```xml
<mhb:University rdf:about="http://www.uni-mannheim.de">
  <mhb:hasEmployee>
    <mhb:UniversityMember rdf:about="http://www.heikopaulheim.com/">
      <mhb:worksFor rdf:resource="http://www.uni-mannheim.de"/>
    </mhb:UniversityMember>
  </mhb:hasEmployee>
</mhb:University>
```
JSON-LD Notation

- JSON is popular in script programming
- JSON-LD: Standard for serializing RDF in JSON

```json
{
    "@id": "http://www.heikopaulheim.com/",
    "http://dws.informatik.uni-mannheim.de/name": "Heiko Paulheim",
    "http://dws.informatik.uni-mannheim.de/teaches": {
        "http://www.w3.org/1999/02/22-rdf-syntax-ns#type": "http://dws.informatik.uni-mannheim.de/Lecture",
        "http://dws.informatik.uni-mannheim.de/title": "Semantic Web"
    }
}
```
Blank Nodes

- Information that is not or cannot be specified
 - "Dieter Fensel has written a book about the Semantic Web"
Blank Nodes

• Information that is not or cannot be specified
 – "Dieter Fensel has written something about the Semantic Web."

Dieter Fensel \(\text{dc:creator} \) "Semantic Web"
Blank Nodes in Turtle

- Variant 1: explicitly named with an underscore

  ```turtle
  :Dieter_Fensel dc:creator _:x .
  _:x a :Book ;
  dc:subject "Semantic Web" .
  ```

- Variant 2: unnamed with square brackets

  ```turtle
  :Dieter_Fensel dc:creator
  [ a :Book;
  dc:subject "Semantic Web" ].
  ```

- Notes:
 - both are equivalent
 - changing blank node names does not change the semantics!
Application of Blank Nodes: n-ary Predicates

• RDF predicates always connect a subject and an object
 – i.e., in the sense of predicate logic, they are binary predicates

\[:\text{Heiko} :\text{works_for} :\text{UniMannheim} \Leftrightarrow \text{works_for}(\text{Heiko}, \text{UniMannheim}) . \]

• Sometimes, n-ary predicates are needed
 – has_ingredient(Recipe, Sugar, 100g)
Application of Blank Nodes: n-ary Predicates

:recipe :hasIngredient [:ingredient :Sugar; :amount "100g"] .

```
Recipe has ingredient Sugar

ingredient amount "100g"
```
Application of Blank Nodes: n-ary Predicates

:recipe :hasIngredient [:ingredient :Sugar;
 :amount [:value "100"^^xsd:int ;

Recipe has ingredient Sugar

How does this differ from the version on the previous slide?

"100"

gram

value

unit

amount

ingredient
Reification

• Latin res ("Thing"), facere ("make")
 – an Explication
 – making a statement, an opinion etc. the subject of a statement
• In RDF: Statements about statements

• "Peter says that Rome is the capital of Spain."
 Implementation:
 – RDF Statements are considered resources themselves
 – Can be subject or object of other statements
• Reification can have multiple levels
 – “Peter says that Wikipedia states that Rome is the capital of Spain.”
Peter says Rome is capital of Spain.
Implementing Reification as Standard RDF

Peter says: Rome is capital of Spain.

RDF representation:

```
rdf:Statement
  rdf:type rdfs:Statement
  rdf:subject peter
  rdf:predicate rdfs:comment
  rdf:object rdfs:comment
```

Diagram:

- Peter
- Rome
- Italy
- is capital of
- Spain

Relationships:

- Peter says Rome is capital of Spain.
Encoding Reification in Turtle

• **Variant 1: Named Statement (with URI)**

  ```turtle
  :triple1 rdf:type rdf:Statement ;
  rdf:subject :Rome ;
  rdf:predicate :isCapitalOf ;
  rdf:object :Spain .
  :Peter :says :triple1 .
  ```

• **Variant 2: Unnamed Statement (Blank Node)**

  ```turtle
  :Peter :says [a rdf:Statement ;
  rdf:subject :Rome ;
  rdf:predicate :isCapitalOf ;
  rdf:object :Spain .
  ] .
  ```
Semantic Principles of RDF

• On the Web, "anybody can say anything about anything"
 – This is called the AAA principle (Allemang & Hendler)

• This principle also holds for the Semantic Web
Semantic Principles of RDF

• One thing can have multiple names

 :Munich :capitalOf :Bavaria .

• On the semantic web, there is not just one name for each thing
 – this is called the Non-unique name assumption

• This means: Just that two things have different names does not mean that they are different!
Let us consider the following example:

\[:Peter \mathrel{:fatherOf} :Julia , \\
 :Mary . \]

How many children does Peter have?

Intuitively, we assume that Julia and Mary are two different persons.

However, this is not trivial for a machine
 – (and the assumption may even be wrong)
Semantic Principles of RDF

• We (probably) do not know all the contents of the Semantic Web
• Therefore, there may be more information on a resource than what we have

• This principle is called "Open World Assumption"
RDF: Intuition and Actual Semantics

• Let us consider this example again:

```prefix
:Peter :fatherOf :Julia ,
     :Mary .
```

• How many children does Peter have?

• Intuition says: two children

• However, he could also have three or more
 (oder also just one, as we have learned just a minute ago)
RDF: Intuition and Actual Semantics

• Both
 – Non-unique Name Assumption and
 – Open World Assumption

will re-occur quite a few times in this lecture

• Hint: consider those two whenever something seems weird when interpreting RDF data
RDF and HTML

- The Semantic Web uses RDF
- The “classic” Web uses HTML

- Does that mean that each information has to be encoded twice?
 - once for humans, once for machines

```html
<html>
  ...
  <b>Dr. Mark Smith</b>
  <i>Physician</i>
  Main St. 14
  Smalltown
  Mon-Fri 9-11 am
  Wed 3-6 pm
  ...
</html>
```

```turtle
:p a :Physician .
:p :hasDegree "Dr." .
:p :hasName "Mark Smith" .
:p :hasAddress :a .
:a :street "Main Street" .
:a :number "14"^^xsd:int .
:a :city "Smalltown" .
:p :hasOpeningHours [a rdf:Bag ;
  [ :day :Monday;
    :from "9"^^xsd:int;
    :to "11"^^xsd:int;
  ]]
  ...
```
Using RDF and HTML Together – Variant 1

- Explicit reference to a RDF version
 - an agent stumbling on the HTML page can download the RDF data file

```html
<html>
<head>
  <link rel="meta" type="application/rdf+xml" title="DC" href="dc.rdf" />
</head>
<body>
...
</body>
</html>

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  xmlns:dc="http://purl.org/dc/elements/1.1/"
  <rdf:Description rdf:about="http://www.ke.tu-darmstadt.de/lehre/semantic-web">
    <dc:publisher>TU Darmstadt</dc:publisher>
    <dc:subject>Semantic Web</dc:subject>
    <dc:creator>Heiko Paulheim</dc:creator>
    <dc:relation rdf:resource="http://www.w3.org/2001/sw/" />
  </rdf:Description>
</rdf:RDF>
```
Using RDF and HTML Together – Variant 2

- Content Negotiation
Content Negotiation in Detail

HTTP/1.1 303 See Other
Location: http://www.mannheim.de/index.html

GET / HTTP/1.1
Host: www.mannheim.de
Accept: text/html
Content Negotiation in Detail

GET / HTTP/1.1
Host: www.mannheim.de
Accept: application/rdf+xml

HTTP/1.1 303 See Other
Location: http://www.mannheim.de/data.rdf

HTTP GET
Address for RDF

Intelligent Agent

Server
Content Negotiation: MIME Types

- MIME: Multipurpose Internet Mail Extensions
- Original purpose: classifying e-mail attachments
 - Text, PDF, ..
- First version: 1996
- Administrated by IANA

- Important MIME types for the Semantic Web
 - application/rdf+xml
 - text/turtle
 - text/n3
 - application/sparql-query
 - application/sparql-results+xml
Using RDF and HTML Together

- **Link to RDF Document**
 - Can be done with a simple HTML editor
 - No special server configuration needed

- **Content Negotiation**
 - Requires particular server setup
 - *One* URI can be used for different representations

- **Both cases require**
 - two different representations
 - “double bookkeeping”
→ Potential source of inconsistencies!
RDF in Attributes (RDFa)

- Idea of RDFa
 - Why not encode HTML and RDF in one document
 - The essential information only has to be encoded once

- RDFa combines XHTML mit RDF

```html
<html>
  ...
  <body about="http://www.marcsmith.com/MarcSmith">
    <b><span property="doc:name">Dr. Mark Smith</span></b>
    <i><span property="doc:profession">Physician</span></i>
    <span rel="doc:address" href="http://www.marcsmith.com/Address">
      <span property="doc:street">Main Street</span>
      <span property="doc:number">14</span>
      <span property="doc:city">Smalltown</span>
    </span>
  </body>
</html>
```
RDFa Language Constructs

- **about** = "http://foo.bar/aSubject"
 - Defines the subject of a page or section
- **property** = "http://foo.bar/aProperty"
 - Defines a relation
 - Contents of the tag are interpreted as a literal
- **rel** = "http://foo.bar/aRelation"
 - Defines a relation to another resource
- **href** = "http://foo.bar/aResource"
 - Defines a relation's object
 - can be the subject of a resource again
- **typeof** = "http://foo.bar/aType"
 - defines a resource's type
RDF in Attributes (RDFa)

```html
<html>
...
<body about="http://www.marcsmith.com/MarcSmith">
  <b><span property="doc:name">Dr. Mark Smith</span></b>
  <i><span property="doc:profession">Physician</span></i>
  <span rel="doc:address" href="http://www.marcsmith.com/Address">
    <span property="doc:street">Main Street</span>
    <span property="doc:number">14</span>
    <span property="doc:city">Smalltown</span>
  </span>
...
</body>
</html>
```
RDF in Attributes (RDFa)

```html
<html>
  ...
  <body about="http://www.marcsmith.com/MarcSmith">
    <b><span property="doc:name">Dr. Mark Smith</span></b>
    <i><span property="doc:profession">Physician</span></i>
    <span rel="doc:address" href="http://www.marcsmith.com/Address">
      <span property="doc:street">Main Street</span>
      <span property="doc:number">14</span>
      <span property="doc:city">Smalltown</span>
    </span>
  </body>
  ...
</html>
```
RDF in Attributes (RDFa)

<html>
 ...
 <body about="http://www.marcsmith.com/MarcSmith">
 Dr. Mark Smith
 <i>Physician</i>

 Main Street
 14
 Smalltown

 </body>
 ...
</html>

Relations without "href" become blank nodes!
Alternative to RDFa: Microdata

• Adding structured information to web pages
 – By marking up contents
 – Arbitrary vocabularies are possible
 – Introduced with HTML5

• Similar to RDFa

```html
<div itemscope
itemtype="http://schema.org/PostalAddress">
  <span itemprop="name">Data and Web Science Group</span>
  <span itemprop="addressLocality">Mannheim</span>,
  <span itemprop="postalCode">68131</span>
  <span itemprop="addressCountry">Germany</span>
</div>
```
Alternative to RDFa: Microdata

- Markup can be extracted to RDF
 - See W3C Interest Group Note: Microdata to RDF [1]

```html
<div itemscope itemtype="http://schema.org/PostalAddress">
  <span itemprop="name">Data and Web Science Group</span>,
  <a href="http://schema.org/PostalAddress">.
  <a href="http://schema.org/name">"Data and Web Science Group"</a>.
  <a href="http://schema.org/addressCounty">"Germany"</a>.
</div>
```

Alternative to RDFa: Microdata

• Commonalities
 – Arbitrary classes/predicates are possible
 – Although Microdata is mainly used with schema.org

• Differences
 – Microdata is slightly less expressive
 – No URIs, only blank nodes
 – No cycles in the RDF graph
 – No reification
RDFa, MicroFormats, and Microdata

- **MicroFormats**: fixed vocabularies for persons, addresses, etc.

- **WebDataCommons**: Large-Scale Extraction of RDFa, MicroFormats, and Microdata from the Web
RDF Tools: Storage

- RDF is often stored in relational databases
- Different storage strategies
 - single triple table
 - one table per class
 - one table per property
- Strategies differ
 - by requirements of (disk) space
 - by query response time for different query types
- Examples: Virtuoso, Sesame, ...
RDF Tools: Visualization

- Mostly graph-based visualization tools
RDF Tools: Validation

- **W3C RDF Validator:**
 - W3C RDF Validator: http://www.w3.org/RDF/Validator/
 - Output of RDF/XML and graphs

- **EasyRDF Validator:**
 - http://www.easyrdf.org/converter
 - Understands and converts a variety of notations
RDF Tools: Programming, Reasoning

• Programming Frameworks
 – for developing RDF-based applications
 – e.g., JENA, RDFReactor, ...

• Reasoners
 – can draw logical conclusions from RDF graphs
 – can answer queries on RDF graphs

• Both will be covered in separate lectures
Wrap Up

• RDF is a language for describing arbitrary things
 – interpretation: set of statements or directed graph
 – Notations: RDF/XML, Turtle

• Special language constructs
 – Blank nodes
 – Reification

• Semantics
 – Non-unique name assumption
 – Open world assumption

• Embedding in HTML is possible

• Large set of tools is available
A Critical Look in the Rear View Mirror

• Is RDF more powerful than XML?

• XML is a markup language for information
• In XML, arbitrary elements and attributes can be defined
• XML tag names are meaningless for a computer

• RDF is a markup language for information
• In RDF, arbitrary classes and predicates can be defined
• RDF class and predicate names are meaningless for a computer
A Critical Look in the Rear View Mirror

• So, why did we spend the last 90 minutes on RDF?
A Critical Look in the Rear View Mirror

How Standards Proliferate:
(See: A/C chargers, character encodings, instant messaging, etc)

14?! Ridiculous!
We need to develop
one universal standard
that covers everyone’s
use cases.

Soon:

Situation:
There are
15 competing
standards.

http://xkcd.com/927/
Berners-Lee (2009): *Semantic Web and Linked Data*
Questions?